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Abstract

We examine the utility and ethics of incorporating national culture profiling in bank-level
machine-learning informed alert models, which relate to financial malfeasance. At a globally im-
portant financial institution, we use binary classifier type alert models and establish the utility
of dimensions of national culture in formulating anti-money laundering predictions. For corpo-
rate (individual) accounts, Hofstede individuality (individuality, and national-level corruption
perception and financial secrecy) scores of the country in which a customer is resident, or from
which a wire is sent/received, are of paramount importance. When combined with extensive
account and transaction data; as well as even a proprietary institutional algorithm, national
culture traits markedly enhance the models’ predictive performances. We consider the ethical
implications of ascribing values, against a global standard, to dimensions of national culture.
We offer an ethical framework for the use of national profiling in anti-fraud alert models.
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1. Introduction and Motivation

According to a 2019 survey by Forrester, as reported in the Financial Times, at least half of
financial services and insurance firms use artificial intelligence, with this percentage expected to
grow. Artificial intelligence is used in a wide variety of ways by these firms, including to analyze
financial markets, and to process large amounts of data (e.g. individual income and spending
patterns) related to identifying anomalies to detect fraud. Artificial intelligence is supported
by several technologies including robotic process automation, natural language understanding,
and, the focus of this paper, machine learning. Particularly relevant, to our paper, machine
learning is now commonly deployed by banks to detect fraud.

Machine learning is also making in roads into business research, particularly in the areas
of finance and economics. For instance, Bianchi, Büchner, and Tamoni (2020) apply machine
learning to estimating bond risk premiums. Gu, Kelly, and Xiu (2018) examine the use of
machine learning for asset pricing. However, in contrast to the typical practice of financial
economics research, machine learning is often conducted with consideration of utility toward
an application rather than in an interest of hypothesis testing. Being often solely data-driven,
machine learning typically provides a forecasting, or in some cases a detection model, with
evaluation of its forecast ability relative to random prediction. Therefore, the need, and in
some cases the potential social awkwardness, of forming, and perhaps publicly identifying,
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testable hypotheses is avoided. Consequently, a demographic or national characteristic found
via machine learning to be a strong predictor of, for instance, bank-fraud, may not be supported
by hypotheses. Machine learning procedures present a point of departure for both business
applications, as well as for business research methodology.

Issues of profiling have recently been to the fore of the public mind around the world, largely
because of the sweeping reaction to the killings in the US of George Floyd and other persons
of color in police hands. While, of course, there are considerable differences between racial
profiling and criminal profiling, it is also arguable that profiling in general, as it is applied
in various contexts, readily leads to blurring of such distinctions. Clearly, there is a need to
consider, in a variety of contexts, the ethics of profiling inputs to machine learning alongside
their intended uses.

We first test and establish the utility of national culture traits to inform a machine learning
alert model for the detection of money laundering at a globally important financial institu-
tion. It is important to consider whether national factors can potentially function as profiling
factors, with concomitant ethical concerns. Certainly, discussions regarding trade-offs between
the predictive efficacy of machine learning models, and the ethics and societal implications of
including national culture inputs to machine learning models would be far less pressing if it is
generally found that such inputs have little predictive power.

We find country-level factors, particularly national culture as comprising strong predictors of
identifying suspect bank wire transfers. Using binary classifier type alert models, together with
corrections for data imbalance, our results reflect the strength of national culture dimensions in
formulating anti-money laundering predictions. For corporate (individual) accounts, Hofstede
Individuality (Individuality, and national-level corruption perception and financial secrecy)
scores of the country in which a customer is resident, or from which a wire is sent/received, are
the most important factors. National culture alone provides a high degree of predictive power.
And when combined with extensive account and transaction data; as well as even proprietary
institutional algorithms already in use, its inclusion greatly enhances predictive ability.

We consider our findings relevant to both the conduciveness of machine learning to incor-
porating national culture; as well as reflecting on the wide body of research that has ascribed
values, particularly with regard to ethical practice and discernment, to cultural dimensions.

The role of national culture has been affirmed in a wide array of business research (Kirkman,
Lowe, and Gibson, 2006). Karolyi (2016) notes an uneasiness with Hofstede’s construction, but
also notes the almost uncanny tendency for research findings to flow from what would be ex-
pected from using Hofstede’s dimensions. National culture is often supported in research by
strongly framed hypotheses, in contrast to what might ensue from use of racial and demographic
qualities in detection and alert models. Indeed, use of national culture in machine learning can
be seen as a gray area between use of ethnic and gender subsets of cultures, with obvious con-
comitant issues of social injustice and unfairness, and yet opening a door to such outcomes.
Within global commerce and banking, there is a need to consider unfairness toward members
of some nations over others. Further, national culture has been modeled on subnational lev-
els, particularly with religion-based demographic data (Stulz and Williamson, 2003). While
ascriptions of values, perhaps laudably, opens the door to considering that differing cultures
evolve their own meanings of values, governance, and corruption etc. But use of national cul-
ture in machine-learning detection and alert models also invites global unfairness by assigning
attributes to individuals that are assigned in aggregate in ways that possibly lack transparency.

Our paper strongly connects to business ethics research by considering the use of national
culture in machine-learning. National culture has prominently been associated with qualities
of ethics and discernment in business ethics research. Additionally, our study and discussion
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follows on from recent articles on the ethical issues inherent in the design of algorithms deployed
in society. Our paper connects to the very timely issue of acknowledging that latent racial and
ethnic biases may be present in any sort of functional profiling or predictive model.

Regarding the contents and transparency of algorithms, for instance, Martin (2019) notes
how algorithms can influence hiring, promotion, and loan approvals. And yet such life-structuring
algorithms are usually devised without transparency. Buhmann, Paßmann, and Fieseler (2019)
express considerable concern regarding algorithmic accountability. This includes concern over
how algorithms are established—similar to absence of hypothesis formation we note above as
a underpinning of machine-learning based research. Seele et al. (2019) also highlight issues re-
garding the quality of transparency of algorithms, particularly with regard to dynamic pricing
models.

We highlight national culture as a predictor of bank fraud. This naturally follows on from a
broad stream of literature connecting national culture dimensions to the quality of ethical be-
havior and perception (e.g.; Armstrong, 1996; Davis and Ruhe, 2003; Getz and Volkema, 2001;
Vitell, Nwachukwu, and Barnes, 1993; Volkema, 2004). For instance Vitell, Nwachukwu, and
Barnes (1993) propose a theoretical application of Hofstede’s cultural dimensions as a basis
for understanding the effects of culture on ethical decision making. That national culture has
been proposed as an important factor in understanding ethical decision making is intuitive, as
culture represents the shared beliefs, values, and ideals of a society.

Vitell, Nwachukwu, and Barnes (1993) suggest that greater hierarchy, relating closely to
Hofstede’s Power Distance, leads to ethical cues being taken from superiors rather than peers,
with formal codes of ethics concomitantly having a greater influence than informal norms.
Related, Getz and Volkema (2001) conclude that both high-level public officials and members
of the underclass are more susceptible to unethical behavior (bribery, extortion) in high power
distance cultures. In their view, high-ranking officials exploit class privilege to obtain personal
benefits from their official positions, while members of the lower classes in highly hierarchical
and unequal societies justify unethical behavior as a reasonable to need to catch up their
standards of living. Volkema (2004) suggests that power distance is positively associated with
the use of competitive and dubious negotiation practices.

With regard to individualism, Vitell, Nwachukwu, and Barnes (1993) posit that countries
high in individualism will be less likely than countries high in collectivism to take into considera-
tion both formal codes of ethics and informal norms. Being more oriented towards self-reliance,
freedom, and achievement, someone from an individualist culture might be inclined to see his
or her actions as above reproach. Similarly, Volkema (2004) suggests that individualism will be
directly related to the perceived appropriateness and the likelihood of using competitive and
questionable negotiation behaviors.

Volkema (2004) suggests that the cultural dimension of masculinity will be directly related
to the perceived appropriateness and the likelihood of using competitive and questionable ne-
gotiation behaviors. Volkema (2004) suggests that individuals from a masculine culture are
more likely to exude exaggerated self-promotion and aggressive bidding for new clients. Getz
and Volkema (2001) contend that masculine cultures are more likely than feminine cultures to
engage in bribery and corruption because achievement in masculine cultures is measured by
commercial success, with the ends thought to justify the means.

Volkema (2004) considers that uncertainty avoidance will be inversely related to the per-
ceived appropriateness and the likelihood of using competitive and questionable negotiation
behaviors. Similarly, Vitell, Nwachukwu, and Barnes (1993) suggest that business practition-
ers from societies that are strong on uncertainty avoidance are more likely to be relatively
more intolerant of any deviations from group norms. Vitell, Nwachukwu, and Barnes (1993)
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suggest that business practitioners in countries that are high in uncertainty avoidance (e.g.,
Japan) will be more likely to consider formal professional codes of ethics when forming their
own deontological norms than business practitioners in countries that are low in uncertainty
avoidance (e.g., the U.S. or Canada). Vitell, Nwachukwu, and Barnes (1993) also suggest that
business practitioners in countries that are high in uncertainty avoidance will be less likely to
perceive ethical problems than business practitioners in countries that are low in uncertainty
avoidance. Aggarwal, J. E. Goodell, and J. W. Goodell (2014) amalgamate literature associat-
ing Hofstede’s dimensions with levels of ethical discernment and practice, finding that higher
GMAT test takers from less ethical national cultural backgrounds score higher.

Further, accounting literature, with a natural emphasis on reporting quality, has for many
years considered varying levels of firm-level of transparency in terms of national culture. In a
seminal paper on cultural accounting, Gray (1988) hypothesizes that power distance is nega-
tively associated with transparency (positive with secrecy). Gray (1988) suggests that this is
because less information is needed to preserve power inequalities. Correspondingly, De Jong,
Smeets, and Smits (2006) find a negative association of openness with power distance (see
also: Velayutham and Perera, 2004). However, Zarzeski (1996), Jaggi and Low (2000) and
Hope (2003) all find a positive association of financial disclosure and power distance. Al-
though, other research (e.g.; J. J. Archambault and M. E. Archambault, 2003; Salter and
Niswander, 1995) are inconclusive regarding the association of power distance and financial
disclosure. Cohen, Pant, and Sharp (1996) find a majority of experts predicting a positive
relationship between power distance and unethical behavior.

Clearly, national factors, particularly cultural factors for machine-learning generated predic-
tion or detection presents a host of ethical questions. Are we going to deploy loan-application
and insurance-claim verification models etc. that treat clients from some countries with greater
scrutiny than others? This issue becomes more compelling when we consider the number of
papers that have used religion as a proxy or instrument for culture. For instance, research
looks at relative proportions of Catholics versus Protestants in US countries as a guide to un-
derstanding differences in dividend payouts etc (e.g. Ucar (2016)). Will US citizens have a
greater or lesser chance of having loans approved if they live in one county versus another?

The use of demographic inputs, particularly country-level factors and cultural factors in
machine learning models touches on a wide variety of literature that incorporate cultural and
demographic variables that imply ascriptions of value to these characteristics.1 We offer, a
framework for assessing the ethics of using country-level factors in machine learning predic-
tion and detection. We identify several characteristics of the use of country-level factors in
machine-learning procedures that are central to evaluating the ethics of their respective usage.
These include: 1) Do public good concerns in countering money laundering outweigh ‘collective
treatment’ concerns in national profiling in algorithms? 2) Do those producing the alerts have
permission to use the personal data? 3) Who is responsible for the design of an algorithm?
4) Are algorithms accountable? 5) Are the algorithms used for detection, or, alternatively, for
prediction?—and are there subtle distinctions regarding this?; 6) Are alert models reflective
of global, national or sub-national; public or private regulation?; 7) Do the algorithms in use
exacerbate tangential societal biases? and 8) Can the deployment of an algorithm, due to
automation, transform the workplace?

The rest of this paper is organized as follows: Section 2 provides rationale for our test

1See, for instance, the area of microfinance, where the notion of female borrowers being more trustworthy is
a pillar of the industry (Aggarwal, J. W. Goodell, and Selleck, 2015)
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of whether national culture can inform anti-money laundering alert models, and whether the
inclusion of such national traits is ethical. Section 3 provides an overview of the problem of
global money laundering. Section 4 describes the nature of the data used in our research, the
dependent variable and the features we construct to model it. We also discuss the challenges
of modelling an unbalanced data set and the solutions we use to combat this problem. Section
5 illustrates the machine learning algorithms we use to model our data set, the theory behind
them and how they compare to one another. Section 6 presents the results of our models and
explains the metrics used for their evaluation as well as the inferences we draw from the algo-
rithms’ outputs. Section 7 discusses a framework for evaluating the ethics of machine learning
prediction and alert models. Section 8 concludes.

2. Rationale

Our study on the efficacy of machine learning models to predict money laundering with a
small number of national factors, as well as account and transaction level data, raises a number
of issues: 1) Is national culture a valid predictor of an individual’s behavior? This question
involves the debate over the veracity of national culture as part of a well-reasoned mechanism
to predict an individual’s behavior. 2) Can machine learning procedures provide accurate
and pragmatic money laundering alerts when supplied with only a small number of national
factors? How important are these national factors in the context of heavily parametrized models
including account and transaction level feature data? This question involves consideration
that machine-learning procedures are often seen as providing advantages, e.g. capturing non-
linearities in the data, over other more traditional modelling in the particular context of ‘big
data’ (Coulombe et al., 2020). Algorithms based on a small number of variables are presumably
more transparent than heavily parameterized models; although their non-linear specifications
may still leave these models as opaque. 3) Considerable regard needs to be given to whether we
should endorse public or private use of machine learning algorithms based on simple national
factors generally, and national culture scores in particular. Is the use of such algorithms fair?
And do they give “voice to values” (Arce and Gentile, 2015)? In other words do placing into
operations algorithms based on endowed national culture implicitly endorse certain culture
traits as ‘positive’ and other traits as ‘negative’?

2.1. Is national culture a valid predictor of individual behaviour?

Noting that national culture has been considered as an important factor in a broad range
of contexts (Kirkman, Lowe, and Gibson, 2006; Kirkman, Lowe, and Gibson, 2017), we con-
sider that national culture facets (i.e. societal cultural value dimensions (Peterson and Bar-
reto, 2018)) can indicate the societal context of individuals. This entails a dual process of, at
one level, acknowledging the cognition of respective individuals: personal attitudes and values
together with, at another level, apprehending those societal culture facets that also inform
individuals’ cognition.

Consistent with argumentation in Peterson and Barreto (2018), we suggest that national
culture facets can reflect contextual characteristics which more strongly shape an individual’s
cognition than do consciously expressed personal values. For instance, it can be comparatively
insightful to understand the societal context of an individual, as opposed to self-professed at-
titudes and values. Doing so is not equivalent to erroneously assigning societal characteristics
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to individuals as a replacement of omitted information about their personal values (Tung and
Verbeke, 2010; Tung and Stahl, 2018). Rather, highlighting the contextual effects of societal in-
stitutions and norms can inform ‘individuals experience and, hence, what people unconsciously
intuit and consciously understand (Peterson and Barreto, 2018; J. W. Goodell, 2019). This
can, in turn, contribute to an individual’s actions, cognition, and choices. In this way, national
culture facets identify the context in which a society’s members react to culture. More specifi-
cally, in this study, we consider if a banking customer’s opportunity and inclination to commit
financial misconduct – laundering money, is informed by his/her cultural context.

We, hence, consider that the propensity of banking service clients toward malfeasance, can
vary markedly across national cultures. As individuals may not always hold unbiased beliefs
and can behave irrationally (J.-B. Kim, Wang, and Zhang, 2016), the anticipated incentives and
deterrents of misconduct and the anticipated likelihood of being held to account for wrongdoing,
can vary substantively across national cultures (Husted, 2000). The social normative nature
of national culture (J. W. Goodell, 2019), in particular, can influence misconduct exhibited by
the customers of financial institutions. We therefore hypothesize the following.

H1 A limited number of national factors, or even national culture alone, can accurately forecast
the likelihood of money laundering.

2.2. Explanatory power of parsimonious models of national predictors.

Literature associates national culture with a host of finance-related behaviour. For instance,
the propensity of market investors to have excessive confidence (Chui et al 2010), as well as to
have greater predilection to hedge (Lievenbruck and Schmid, 2014) and to prefer to contracts
to relationship financing (Aggarwal and Goodell 2009); choice of firm leverage (Chui, Lloyd
and Kwok, 2002), ambition to undertake investment (Shao et al. 2013) and the design of public
financial policies (Aggarwal and Goodell 2013). Clearly given the breadth of studies associating
national culture with behaviour in business, there are ample reasons to consider the national
culture will impact the predlilection for bank fraud.

2.3. Explanatory power of parsimonious models of national predictors.

Machine learning algorithms are often highly complicated and consequently difficult to ex-
plain—or to justify (Barocas, Hood, and Ziewitz, 2013; Introna, 2016; Musiani, 2013; Seaver, 2019;
Ziewitz, 2016). This complexity can act against assigning responsibility to the developer or to
the user, as this assignment is deemed inefficient and even impossible. Algorithms based pri-
marily on a small set of national factors, which are therefore comparatively transparent, can
have adequate explanatory power to accurately prompt money laundering alerts. It may turn
out, to some extent at least, that unaccountable and complex algorithms, inherently lacking
transparency, are not needed. Or at least, if the algorithm of a machine learning procedure
remains complex, the inputs used as factors need not be.

We investigate whether algorithms using just simple national factors, corresponding to the
procedures we highlight in this paper, can be very effective. Therefore, we evidence that com-
plexity of algorithms, with concomitant lack of transparency, may not be needed. While the
inscrutability of algorithms has often been highlighted as both necessary to achieve predictive
performance, and as a means to avoid accountability (Desai and Kroll, 2017), our results, at
least in the context of this study, suggest otherwise.
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3. Money Laundering

Money laundering is an issue of global importance, undermining local economies and pene-
trating through borders. It facilitates the generation and disbursement of illicit proceeds from
criminal activities through integration into the financial system, which can be used to further
finance illegal activity, compounding the problem. Although difficult to measure with any de-
gree of confidence, estimates for the total amount of money laundered worldwide range from
2-5% of global GDP (approximately $600 billion to $1.6 trillion).

The process of money laundering can generally be regarded as a procedure for transforming
dirty money (i.e. money generated from illegal activities) to clean money (i.e. doesn’t raise
suspicion) by integrating it into any available legitimate financial system, so it can be subse-
quently used without raising any suspicion. In short, the money is transacted so as to conceal
or obscure its link with its criminal origins.

Efforts in combating money laundering require cooperation between the public and private
sectors. However, current compliance requirements, such as transaction monitoring and suspi-
cious activity reporting, impose significant costs on the private sector with very limited returns.
Nowhere is the impotency of this endeavour highlighted better than in the recent high-profile
scandals involving Danske Bank and Swedbank. The burden of anti-money laundering (AML)
surveillance is shared by all financial institutions in the private sector, with failure to meet cer-
tain standards of monitoring punishable by hefty fines and penalties imposed by the financial
governing bodies. AML surveillance can be painstakingly inefficient -– thousands of potentially
suspicious transactions need to be vetted each day in a time-consuming and labour-intensive
process, but since the failure to identify and report suspicious activity can be so costly, financial
institutions tend to err on the side of caution by casting a wide net, which unfortunately leads
to a greater rate of false positives2.

Since 2000, the International Monetary Fund (IMF) has redoubled its work on AML and,
after the tragic events of September 11th 2001, its activities have been expanded to include
combating the financing of terrorism (CFT). In 2009, the IMF launched a donor-supported
trust fund to finance AML/CFT capacity development in its member countries. On top of
government and international body expenditure on AML programs, the private sector also has
had to foot the bill in order to comply with the rules set out in the Bank Secrecy Act (BSA) in
the US. According to a 2018 report, Lexis Nexis Risk Solutions estimates that AML compliance
costs US financial firms approximately $25 billion annually.

By its very nature, money laundering is difficult to measure since it occurs outside the forum
of normal economic activity. People rely on inference from best relevant data that are available
most, if not all of the time. An example of such data is the 2002 National Money Laundering
Strategy, an annual report from 1999-2003 by the US Treasury on Anti-Money Laundering
(AML) efforts. According to this report, $386 million worth of assets were seized in relation
to money laundering in 2001, with a corresponding figure of $ 241 million in forfeited assets.
However, such sums are considered only a small fraction of the true total. Various techniques
and schools of thought have been employed in order to make reliable and consistent estimation
on the extent of money laundering. The macroeconomic approach holds that the demand for
money laundering is related to the monetary component of the so called shadow economy,
and tools such as currency-demand analysis (Tanzi, 1980) prove useful in this regard. One
study, conducted by the United Nations Office on Drugs and Crime (UNODC), investigated
the volume of illegal funds generated by drug trafficking and organised crime and to what extent

2Essentially, a false alarm, whereby seemingly innocuous activity has unnecessarily garnered attention.
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these funds are laundered. Their findings estimated that, in 2009, criminal activity amounted
to 3.6% of global GDP with 2.7% being laundered, amounting to $ 1.6 trillion.

In light of the recent work done on the role culture plays in corporate misconduct and
bank failure (Liu, 2016; Berger et al., 2019), we explore the relevance of several country-
specific cultural and institution quality indices in the context of modelling the incidence of
suspicious money movement within a financial institution. Another country-specific measure
incorporated in this study is the concept of secrecy jurisdiction, introduced by Cobham, Jansk,
and Meinzer (2015). They suggest jurisdictions are situated across a spectrum of secrecy in
terms of financial sector and global market share. This is in contrast to binary classification of
Tax Haven/Offshore Finance. The aim here is to shift the narrow tax-focused narrative onto a
broader sense of financial secrecy and transparency, which eventually may facilitate changes in
policy and practice. We believe this measure is particularly relevant in the context of money
laundering activity detection, as a jurisdiction with a higher level of secrecy in financial sector
is more likely to attract higher volume of transactions initiated with the intent of concealing the
illegal origin, as the regulations of such jurisdiction make it more difficult to obtain necessary
information to trace the money flows. We benefit from a large proprietary dataset containing
cross-border money movements via wires in a major global financial institution. A proportion
of the wires are flagged as ‘suspicious activities’ by the institution’s designated investigative
team, which can be regarded as a precursor to money laundering. We further draw inspirations
from an extensive literature of machine learning and its application in various finance context,
such as fraud detection, default risk rating, etc. (Khandani, A. J. Kim, and Lo, 2010; Butaru
et al., 2016; Kumar et al., 2019). Our data set provide us with a clearly labelled response
variable (ISSUE), and hence supervised learning for a classification problem is the suitable
methodological framework. We employ four different machine learning algorithms, which are
derived from classification and regression trees (CART) (Breiman et al., 1984) and all popular
choices among academics as well as data science practitioners. We find that the introduction
of these variables complement the institution’s own account and transaction-level data, since
the inclusion of these predictors as an added layer of attributes enhance the performance of
our models. We aim to provide practical implications for the financial services sector in terms
of AML compliance strategy in this study. In additional to existing practices already in place,
such as Know-Your-Customer (KYC), AML operations within the private sector could further
benefit from incorporating geopolitical or regulatory information, and hence the investigative
resources could be concentrated on these money laundering hot-spots.

We believe findings in this study can provide practical implications for the financial services
sector in terms of AML compliance and prevention strategy. The introduction of country-
specific variables complement the institution’s own account- and transaction-level data, since
the inclusion of these predictors as an added layer of attributes enhance the performance of
the predictive models. In additional to existing practices already in place, such as Know-
Your-Customer (KYC), AML operations within the private sector could further benefit from
incorporating geopolitical or regulatory information, and hence the investigative resources could
be concentrated on these money laundering hot spots. As indicated in an IIF (Institute of In-
ternational Finance) study, the potential benefits of applying machine learning in anti-money
laundering operation are inevitably faced with several challenges as well. A few key aspects
highlighted in the study include AML specific challenges such as data quality, obstacles regard-
ing data sharing and legacy/dated IT infrastructure, while machine learning-specific challenges
such as was for ML talents, generalisation of trained models as well as interpretation of results,
among other issues. We have first-hand experience with some, if not all, of these challenges
during different stages of this study, in particular in the aspects of data quality, legacy IT
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systems, data sharing and protection, and the nature of the real-world data having extremely
imbalanced classes. Nevertheless, we utilise the data to the best of our knowledge and obtain
satisfactory results which provide insights and empirical evidence that how financial institutions
can benefit from incorporating machine learning and publicly available data along with their
own data to enhance AML operation.

4. Data

In this study, we use a large proprietary data set from a major international financial
institution collected over a decade, from 1st January 2009, to 31st December 2018. The data
pertains to alerts generated by international wire transfers both to and from customers of that
institution, whereby details relating to the wire amounts and countries involved automatically
flag up potentially suspicious activity on their monitoring systems. The alerts are subsequently
investigated by a dedicated team of experts and those alerts deemed highly suspicious are
escalated to the status of issue case and passed on to a higher authority for processing.

The accounts associated with the alerts number greater than 60,000 and can be broadly
split into six different categories.3 For the purposes of our study, it was helpful to focus on two
categories, or account registration types; corporate-related and people-related. These account
for 78.23% of the alerts and 93.77% of the issue cases and differ fundamentally in their nature
of activity, and so it seems only natural to treat them as separate problems. Table 1, Panel A
illustrates the incidence of alerts and subsequent issue cases by year and how these numbers
break down over these two categories. By only considering these two registration types, our
data set reduces from 206,751 alerts to 153,917 alerts.4

4.1. Sample Selection

As part of our data set, we have access to details on customers, accounts and their transac-
tion history, in addition to the information relating to the wire transactions that triggered the
alerts. As such, we will seek to build our model variables from this data (see Section 4.2) but,
unfortunately, not all the information available to us is complete. Table 1, Panel B illustrates
the number of alerts that can be successfully matched to each selection criteria. Due to incom-
pleteness in our data, only about 60% of the alerts can be matched to the wire transactions
that triggered them on the day. The next issue with our data incompleteness is the Customer
Age information, however this has more of an ontological reason: many accounts associated
with the alerts belong to corporate entities and obviously cannot be assigned a date of birth,
as such. As you will see later on, we will only include this information in our models when we
are looking at people-related alerts in isolation.5

[ Please insert Table 1 about here. ]

3See Internet Appendix A.
4See Panel B in Table 1.
5As a consequence, people-related models will always contain an additional Customer Age variable.
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4.2. Feature Selection

From the data set available to us, we have grouped the candidate predictors available to
us into 3 broad categories; (1) Account-level, (2) Country-level and (3) Transaction level. The
details are summarize in Table 2. Note again that the Customer Age predictor can only be
used with the people-related alerts.

4.2.1. Country-level Predictors

For each alert, we distinguish between the origin/destination country of the wire transac-
tions that comprise that alert, and the residence country of the customer receiving/sending the
wire. The reason for this seemingly arbitrary dichotomy (as opposed to simply differentiating
between sending and receiving country) is due to the asymmetrical nature of our data: the
residence country of the client is reliably documented whereas there is sometimes uncertainty
about the identity of the country to/from which the client is sending/receiving the wire.6 To
translate this information into quantifiable numbers, we use several internationally recognised
indices that attempt to measure the levels of corruption and financial secrecy of a country and
the observed cultural measures that may be relevant to suspicious wire activity.

1. Corruption Perception Index Provided by Transparency International, this index
ranks countries “by their perceived levels of public sector corruption, as determined by
expert assessments and opinion surveys.”

2. Financial Secrecy Index Provided by the Tax Justice Network, this index ranks coun-
tries according to their secrecy and the scale of their offshore financial activities. A
politically neutral ranking, it is a tool for understanding global financial secrecy, tax
havens or secrecy jurisdictions, and illicit financial flows or capital flight. (Puspitasari
et al., n.d.; Houqe et al., 2015; Michalos and Hatch, 2019; Hassan and Giorgioni, 2015)

3. Uncertainty Avoidance Index One of Hofstede’s dimensions of culture, this index
measures the tolerance a society has for the unknown or ambiguous. A country high
on this scale typically feels uncomfortable with uncertainty and so seeks to instill beliefs
and institutions that provide certainty and conformity, avoiding unorthodox behaviours.
Countries at the other end of the scale tend to be have a more relaxed attitude to legis-
lation and take more risks, which can be a good thing (innovation) or a bad thing (bank
failure).

4. Masculinity Index One of Hofstede’s dimensions of culture, this index measures the
degree to which typically male characteristics (competitiveness, heroism, assertiveness,
leadership, achievement etc.) are valued in a society. At the other end of the scale,
societies with more feminine values promote cooperation, modesty, duty of care to more
vulnerable members of society, etc.

6For example, sometimes an IBAN is included, other times information in the address or instructions field
needs to be used to help identify the country.
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5. Individualism Index One of Hofstede’s dimensions of culture, this index measures the
degree to which a society values the role of the individual versus that of the collective.
Hofstede defines this as: “a preference for a loosely-knit social framework in which indi-
viduals are expected to take care of only themselves and their immediate families.” At
the other end of the scale, a more collectivist society has broader criteria for the groups
they identify with, which take care of their members in exchange for unquestioning loyalty.

6. Power-Distance Index One of Hofstede’s dimensions of culture, this index measures
the extent to which the authority of people in positions of power is accepted by those
lower down the food chain. Typically, in a country high on this scale, the population
holds relatively authoritarian views, based on more traditional, rather than secular, ar-
guments. These societies tend to be more stratified and display more conformity. At the
other end of the scale, we have a society that strives to equalise power and more readily
decry injustices or abuses of power.

Thus, the customer’s country of residence, and the country of wire origin/destination contribute
two sets of variables, which we will distinguish by the subscripts R and W denoting “Residence
country” and “Wire country” respectively.

4.2.2. Account-level Predictors

The Customer Age is defined as the age of the customer (i.e. private individual) on the date
the alert is generated.7 Similarly, the Account Age is the time elapsed between the date the
account was establishes and when the alert was triggered. The Customer Net Worth is defined
as the sum total of the balances on all the accounts belonging to that customer. The Alert
Supplier Code relates to one of two systemic methods that the monitoring system of the major
international financial institution uses when collecting the alerts.

4.2.3. Transaction-level Predictors

The variables belonging to this category come from 2 channels; (1) the wire transactions that
triggered the alert (2) the transaction history of the account associated with an alert. For the
wire variables, we measure the number of incoming wires, the aggregated amount of incoming
wires, the standard deviation of incoming wire amounts, the number of outgoing wires, the
aggregated amount of outgoing wires, the standard deviation of outgoing wire amounts. For
the transaction history variables, over a 180 day period preceding an alert, we measure the
number of incoming transfer-type transactions, the aggregated amount of incoming transfers,
the number of outgoing transfers, the aggregated amount of outgoing transfers, the number of
incoming check-type transactions, the aggregated amount of incoming checks, the number of
outgoing checks, the aggregated amount of outgoing checks.

[ Please insert Table 2 about here. ]

7This predictor only applies to alerts associated with people-type accounts.
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4.3. Dependent Variable

The dependent variable in this study is the outcome of an investigation – specifically,
whether or not an alert is deemed to be highly suspicious, i.e. an issue case. As mentioned
earlier, the raising of alerts is an automated process, determined by a customer’s aggregated
wire transactions exceeding a certain threshold, for wires involving blacklisted countries on a
given day. A team of investigators is tasked with examining in detail, each case flagged up
by the alert system. An alert passes through several phases of escalation before reaching the
ultimate status of issue case, at which point the case is passed onto the authorities for legal
processing.

Though highly inefficient,8 this method of screening transactions for suspicious activity
remains industry standard for the simple reason that financial governing bodies enforce harsh
penalties for institutions judged too lax in such matters.

5. Methodologies

This section presents a discussion of the various data resampling methods used in this paper
to meaningfully draw information from the data. It then presents a discussion of the machine
learning methodologies employed and the performance evaluation metrics used to evaluate the
models. Finally, it presents a discussion on feature importance. We discuss the data resampling
techniques in subsection 5.1; machine learning methodologies in subsection 5.2; performance
evaluation metrics in subsection 5.3; and feature importance in subsection 5.4.

5.1. Data Balancing

The dependent variable suffers from severe class imbalance. That is, the number of obser-
vations belonging to the positive class (issue case) is significantly exceeded by the number of
observations belonging to the negative class (generated alert not an issue case). Models trained
on such data prioritize the prevalent class at the expense of the minority class which leads to
an overly optimistic measure of accuracy. Such models can detect a non-fraudulent transac-
tion with high accuracy; however, they may fail to detect highly suspicious transactions. If
the highly suspicious transactions go undetected, then they may pose a threat to the financial
institutions’ professional credibility and could also lead to regulatory sanctions on them.

In this study we avail of various data-resampling techniques to overcome the challenges posed
by the imbalanced class distribution. Below, we discuss the resampling techniques employed in
our study.

1. Under-sampling: This technique randomly discards observations from the majority
class to better balance the skewed distribution. In reducing the majority class size to
match the minority class, this technique, however, forgoes potentially useful information
from the majority class.

2. Hybrid-sampling: Combination of under-sampling and over-sampling9 methods, this
technique applies under-sampling technique to the majority class and over-sampling tech-
nique to the minority class to balance the class distribution.

8The proportion of false alarms typically exceeds 99%. To avoid confusion, we reserve the use of the term
“false positives”, for reference to the model results.

9Over-sampling: This technique randomly duplicates observations from the minority class to match the
majority class size. We refrain from employing this technique as it can be computationally expensive (in cases
of severe class imbalance it may almost double the size of the dataset) and it often leads to overfitting the model.

12



3. Synthetic-sampling: This technique works like over-sampling, however, instead of ran-
domly duplicating observations from the minority class, it introduces artificial noise to
perturb its predictor values to avoid over-fitting. In our study, we use ROSE (Random
Over-sampling Examples) synthetic-sampling method. This method utilizes the hybrid-
sampling technique in addition to synthetic-sampling to overcome the computational chal-
lenges of a much larger data set.

5.2. Machine Learning Frameworks

In this subsection we discuss the machine learning algorithms, namely logistic regression,
random forests, support vector machines, and gradient boosted machines, employed in our
study to detect money-laundering at the financial institution.

5.2.1. Logistic Regression

Logistic regression (LR) models the probability of an observation belonging to a particular
class. It employs the logistic function,

p(X) =
eβ0+β1X1+...+βpXp

1 + eβ0+β1X1+...+βpXp
(1)

to model the probability of the categorical response variable, Y. In the above logistic function
X1, X2, . . . , Xp are the p features. Simple manipulation of the above logistic function gives us,

p(X)

1− p(X)
= eβ0+β1X1+...+βpXp (2)

and

ln(
p(X)

1− p(X)
) = β0 + β1X1 + ...+ βpXp (3)

which shows that the logit, ln(p(X)/(1−p(X))), is a linear function of the featuresX1, X2, . . . , Xp.
We estimate the coefficients using the Maximum likelihood method. After the coefficient esti-
mation, we select a suitable probability threshold to classify observations to the two distinct
classes. Logistic regression is easy to implement and does not require making assumptions
about the class distributions in the feature space. However, since it assumes a linear rela-
tionship between the logit and the features, this algorithm fails to more complex non-linear
behavior - unless such a relationship is explicitly accounted for.10

5.2.2. Random Forest

A tree-based machine learning algorithm that in generating multiple decorrelated trees,
Random Forest combines their corresponding predictions to arrive at a single prediction. The
rationale for this algorithm consists in improving the prediction accuracy vis-à-vis the Deci-
sion Tree algorithm. When predictions of several decorrelated decision trees are combined, the
resulting machine learning method in registering lower variance leads to better prediction accu-
racy. Although, the Random Forest achieves higher prediction accuracy than a single decision
tree model, it does so at the expense of lower model interpretability. Below, we briefly discuss
the decision tree algorithm and then examine the random forest algorithm.

10That is, our variables must be transformed accordingly in order capture the behavior we wish to model,
e.g., a quadratic or logarithmic function.
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Decision Trees
Decision Trees involve stratifying the feature space into non-overlapping regions. For a test
observation that falls in a particular region Ri, the Decision Tree predicts the response value
for the test observation to be the mean or mode (depending on whether the response variable
is quantitative or qualitative) of the response values of the training observations in the region
Ri.

Thus, the recursive binary splitting approach is adopted in constructing the non-overlapping
regions of the feature space. This approach popularly known as the top-down greedy approach
begins at the top and splits the feature space successively. A feature that results in the highest
reduction in the residual sum of squares / classification error rate is considered for a split, at
a given step in the tree building process. Each split creates two additional non-overlapping
regions. To split one or both the resulting regions, the algorithm chooses the features that
minimize residual sum of squares / classification error rate within the regions. This process
of splitting ceases when the stopping criterion is met. This approach is called ‘greedy’ since
the feature that minimizes the residual sum of squares / classification error rate the most at a
given point privileges a readily available split candidate rather than opting for a feature that
could result in a better decision tree in the long-term.

Once the decision tree is developed, for any given test observation, the algorithm first iden-
tifies the region to which the test observation belongs. It then assigns the mean/mode of the
response values of the training observations belonging to the same region as the response value
for the test observation. Although the Decision Tree algorithm is intuitive, unbiased (when
grown sufficiently deep), and offers highly interpretable results, being prone to high variance
its predictions are often unreliable. The Random Forest algorithm, an ensemble of particularly
constructed decision trees, effectively overcomes this challenge. And we will focus on the Ran-
dom Forest algorithm.

Random Forest
Random Forest (Breiman, 2001) algorithm in generating multiple decorrelated decision trees
averages their predictions to yield a single prediction. Relying on the premise that averaging a
set of independent observations having equal variances, this algorithm decreases the variance
of the mean of the observations. The algorithm first generates a large number, say ‘B,’ boot-
strapped samples from the training dataset. It then fits and trains the Decision Tree model on
each of these B bootstrapped samples. The algorithm fits the decision trees on to the boot-
strapped samples such that a random sample of ‘m’ features are considered as split candidates
every time a split is made, rather than the entire set of features. Anytime a split is made, a fresh
sample of random ‘m’ features are chosen for split consideration. Generally, ‘m’ is the square
root of the total number of features. By drawing a fresh sample of ‘m’ features, the algorithm
allows every feature to be considered for a split. This in turn produces uncorrelated decision
trees which result in uncorrelated predictions. Averaging these uncorrelated predictions leads
in a reduction of the variance of the ensemble method.

More rigorously, if f̂1(x), f̂2(x), ..., f̂B(x), are the predictions that go with the B distinct
decorrelated decision trees for the test observation x, then the Random Forest offers the pre-
diction,

f̂RF (x) =
1

B

B∑
b=1

f̂ b(x) (4)

Note that the B decorrelated decision trees are grown deep and, therefore, register high variance
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and low bias. However, by averaging these decorrelated trees, the resulting Random Forest
model achieves lower variance which improves its prediction accuracy.

5.2.3. Support Vector Machines

Support Vector Machine (SVM) is a machine learning algorithm predominantly applied to
binary classification problems. Its approach builds on the Maximal Margin Classifier algorithm
applied in classifying linearly separable observations. Since most datasets cannot separate the
observations by a linear boundary, the Maximal Margin Classifier has limited applications.
By introducing Soft Margin and Kernel concepts to the Maximal Margin Classifier, SVM can
classify observations with non-linear decision boundaries. Soft Margin is a boundary that ba-
sically classifies the observations into two different classes, though it cannot be said to do this
perfectly. It misclassifies a few observations for the sake of improving its classification for a
majority of training observations and achieving better robustness to individual observations.
Further, to account for non-linear decision boundaries, SVM enlarges the feature space effi-
ciently using specific functions called Kernels that quantify the level of similarity between the
two observations. In adopting appropriate Soft Margin and Kernel, the resulting SVM model
achieves lower variance and accounts for non-linear decision boundaries.

Maximal Margin Classifier relies on the existence of a hyperplane.11 If a hyperplane exists,
then this could act as a classifier such that an observation belonging to one side of the hyperplane
is classified as class 1; if the observation belongs to the other side, then it is classified as class
2. Thus, an observation X belongs to class 1 if, say, for example,

f(X) = β0 + β1X1 + β2X2 + ...+ βpXp > 0 (5)

And it belongs to class 2 if,

f(X) = β0 + β1X1 + β2X2 + ...+ βpXp < 0 (6)

Additionally, the magnitude f(X) acts as a measure of confidence in the class assignment. If
f(X) is far from zero, then we can be confident about the class assignment. Whereas if f(X) is
close to zero, then the class assignment may not be reliable.

Once we establish the existence of a hyperplane, then the Maximal Margin Classifier qual-
ifies as the optimal hyperplane. Thus, it is the hyperplane that has the largest minimum
distance from the training observations. We expect the optimal hyperplane to have the largest
minimum distance from the training observations such that it can restore confidence in the class
assignment of the observations. Once the Maximal Margin Classifier is located, the algorithm
assigns a test observation to a class depending upon which side of Classifier it lies.

It so happens that the Maximal Margin Classifier depends only on a few training observa-
tions called the support vectors. Shifting a support vector or introducing a new observation
that lies within the Margin of the optimal hyperplane could result in a new optimal hyperplane.

11A hyperplane is a linear boundary that separates a dataset’s observations into two different classes. For
instance, consider a two-dimensional feature space such that its observations could be separated by a linear
boundary. In this case, the linear boundary, a hyperplane, is a line that divides the two-dimensional feature
space into halves. Formally, β0 + β1X1 + β2X2 = 0 is a hyperplane in a two-dimensional scenario where β0,β1,
and β2 are the parameters. The idea behind this notation could be extended to any arbitrary p-dimension feature
space, where a hyperplane is defined as an affine subspace of dimension p− 1. In other words, a hyperplane can
be thought of as a flat subspace of dimension p − 1 that divides the feature space into halves and follows the
definition β0 + β1X1 + β2X2 + ...+ βpXp = 0.
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This suggests that the algorithm is prone to overfitting the training dataset. To sidestep over-
fitting, we misclassify a few training observations for achieving better robustness to individual
observations and assigning most of the training observations to the correct classes. More tol-
erant to a few misclassifications, the new classifier is called the Soft Margin Classifier. The
number of misclassified observations violating the optimal hyperplane is governed by a tuning
parameter. Much like the Maximal Margin Classifier, the Soft Margin also depends solely on
the support vectors. The optimization problem for the Soft Margin Classifier could be modi-
fied by including additional functions to its features so that it could classify observations that
could only be separated by a non-linear boundary. However, including additional functions
could render the algorithm computationally expensive. Therefore, to obtain a computationally
feasible non-linear decision boundary, SVM introduces Kernels to the Soft Margin Classifier.

5.2.4. Gradient Boosted Models

A recently developed ‘black-box’ machine learning algorithm, Gradient Boosting Machine
(GBM) has gained popularity for its high predictive accuracy. Being highly flexible, it could
also be applied to a wide range of problems. GBM is an ensemble of weak predictive models
where a weak model is defined as one whose prediction accuracy is only marginally better than
random guessing. Any model can be a candidate for a weak model, however, for classification
problems, such as ours, Classification Decision Trees are predominantly used (Kuhn, K. John-
son, et al., 2013). Our chosen weak predictive models, the Classification Decision Trees, are
generally grown shallow with the number of splits ranging from 1-6. For our dataset, we note
that GBM with 4 splits yield optimum results.

GBM was inspired by another boosting algorithm called AdaBoost, developed by Freund,
Schapire, et al. (1996). In AdaBoost, a weak predictive model is fit to the weighted residuals
of the ensemble created at the previous step so that the new weak predictive model could im-
prove upon the errors made by the previous ensemble. In other words, a weak model is fit, in
iteration, i + 1, to the residuals of the ensemble created in iteration i, such that the residuals
corresponding to the incorrectly predicted observations by the ensemble are assigned higher
weights compared to those predicted correctly. Assigning higher weights to the observations
whose response values are difficult to predict, allows the new weak model to focus on improving
the prediction accuracy for these observations, hence improving the overall prediction accuracy
for the whole ensemble.

Much like AdaBoost, GBM algorithm consists in fitting weak predictive models sequen-
tially to the ensemble such that their inclusion improves the predictive performance of the
whole ensemble. The weak predictive models are constructed such that these models and the
negative gradient of the loss function associated with the whole ensemble are maximally corre-
lated (Friedman, 2001). Below, we outline the GBM methodology.

Consider a training dataset (xi, yi)
N
i=1 where x denotes the explanatory variables and y

denotes the response variable such that the true relationship between x and y is given by f .
We estimate a model f̂(x) such that it minimizes the expected value of the loss function12

L(y, f(x)),

12Since our response variable is binary, we consider the binomial loss function.
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f̂(x) = y (7)

f̂(x) = argminf(x)Ex[Ey(L(y, f(x)))|x]

In restricting the search for the estimated model to the family of parametric functions, we
consider the following “additive” expansion for the true function (in the equation below, M is
the number of iterations),

f(x; {βm,am}M1 ) =

M∑
m=1

βmh(x;am) (8)

In the above function, h(x;a) is a parameterized function of the explanatory variables x,
characterized by the parameters a = {a1, a2, . . . }. In our case, h(x;am) is a shallow classifica-
tion tree and therefore the parameters am are the split variables, split locations, and the modes
of the terminal node for the individual trees.

By choosing a parameterized model f(x;P), where P = {P1, P2, ...} is a finite set of pa-
rameters, the function optimization problem changes to the following parameter optimization
problem,

P∗ = argminPΦ(P) (9)

where
Φ(P) = Ey,xL(y, f(x;P)) (10)

We, therefore, get
f̂(x) = f(x;P∗) (11)

Applying numerical optimization methods to solve for P∗ imposes the solution for the param-
eters as P∗ =

∑M
m=0 pm. In this solution for P∗, p0 and {pm}M1 are the initial guess and the

successive increments (“boosts”), respectively. Each “boost” depends on the sequence of pre-
ceding “boosts” and to solve the optimization problem, the algorithm chooses Steepest-descent
numerical minimization method. In defining the increments {pm}M1 , first the gradient, gm, is
computed,

gm = {gjm} = {[∂Φ(P)

∂Pj
]P=Pm−1

} (12)

where Pm−1 =
∑m−1

i=0 pi . The increment is then defined as pm = −ρmgm, where,

ρm = argminρΦ(Pm−1 − ρgm) (13)

In the above notation, −gm is the direction of “steepest-descent” and ρm is the “line search”
along this direction.

Contrarily, we can also apply numerical optimization in the function space. In other words,
we treat f(x) as a parameter and minimize Φ(f) = Ey,xL(y, f(x)) = Ex[Ey(L(y, f(x)))x]. We
consider the solution to have the following functional form,

f̂(x) =

M∑
m=0

f∗
m(x) (14)
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where f∗
0 (x) and {f∗

m(x)}M1 are the initial guess and increment functions (“boosts”) defined by
the optimization, respectively. Each “boost” is updated as follows,

f∗
m(x) = −ρmgm(x) (15)

where

gm(x) = [
∂ϕ(f(x))

∂f(x)
]f(x)=fm−1(x) = [

∂Ey[L(y, f(x))|x]
∂f(x)

]f(x)=fm−1(x) (16)

is the gradient13 and
ρm = argminρEy,xL(y, fm−1(x)− ρgm(x)) (17)

is the “line search” along the direction of −gm. This non-parametric approach can no longer
be applied when the joint distribution of (x, y) is estimated by the finite sample (xi, yi)

N
i=1.

To sidestep this, we can consider a parameterized form, as assumed in case of the parametric
method discussed, thereby converting the optimization problem to a parametric optimization
problem,

(βm,am)M1 = argmin{β′
ma

′
m}M

1

N∑
i=1

L(yi,

M∑
m=1

β
′

mh(xi;a
′

m)) (18)

If the given approach also fails, then the “greedy stagewise” can be adopted as follows,

(βm,am) = argminβ,a

N∑
i=1

L(yi, fm−1(xi) + βh(xi;a)) For m = 1, 2, . . . ,M (19)

And the ensemble is updated as follows,

fm(x) = fm−1(x) + βmh(x;am) (20)

Thus, the choice of the loss function and weak predictive models determine the model properties
of GBM. However, these choices in providing the algorithm with high flexibility render their
applicability to a wide range of problems.

5.3. Model Evaluation

We now discuss the performance metrics used to evaluate our models. For evaluating the
out-of-sample predictions, the data sample is split into training and test samples. The models
are trained on the training sample and its predictive performance is estimated on the test sample
via its confusion matrix (Figure 1). A confusion matrix tabulates a model’s class predictions
against the actual class assignment of the observations. We label the entries of the confusion
matrix as follows:

• TP: the number of true positives, i.e. positive class observations that the model has
correctly classified.

• TN: the number of true negatives, i.e. negative class observations that the model has
correctly classified.

• FN: the number of false negatives, i.e. positive class observations that the model has
incorrectly classified.

• FP: the number of false positives, i.e. negative class observations that the model has
incorrectly classified.
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Figure 1: Confusion Matrix

Note that the total number of observations (N) in our sample must be the sum of these
four quantities, i.e.,

N = TP + TN + FN + FP (21)

We now define our metrics, true positive rate (TPR) and false positive rate (FPR), with
reference to the confusion matrix.

TPR, also referred as sensitivity and recall, measures the proportion of positive observations
correctly classified by a model:

TPR =
TP

(TP + FN)
(22)

FPR, or fall-out, measures the proportion of negative observations misclassified by a model:

FPR =
FP

(FP + TN)
(23)

Both TPR and FPR lie between 0 and 1. Typically, we want TPR to be as high as possible
and FPR to be as low as possible. Unfortunately, these two metrics do not vary independently
of each other, unless we are dealing with a perfect model . To achieve high TPR we require a
more sensitive model which comes at the cost of higher false positives, i.e., higher FPR. This
trade-off is a general feature of any classification model.

Most ML classification algorithms estimate the probability of an observation belonging
to the positive class. Typically, a value of 0.5 is used as the probability threshold, i.e., an
observation whose estimated probability is greater than the threshold is assigned the positive
class; whereas, if the estimated probability is less than the threshold, it is assigned the negative
class. Lowering the threshold increases the number of true positives, however, it also increases
the number of false positives; whereas raising the threshold lowers the number of false positives,
however, at the expense of reducing number of true positives. Therefore, to measure the overall
performance of a model, we plot the receiver operator characteristic (ROC) curve. ROC curve is
the graphical representation of the relationship between the true positive rate and false positive
rate when the probability threshold is varied.

13ϕ(f(x)) = Ey [L(y, f(x))|x] and fm−1(x) =
∑m−1

i=0
f∗
i (x)
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Figure 2 shows a typical ROC curve for a classification model. Each point on the curve pro-
vides the TPR (y-coordinate) and FPR (x-coordinate) corresponding to a probability threshold.
Ideally, a model with TPR equal to 1 and FPR equal to 0 yields the best predictive capacity.
However, in practice, we choose a model that hugs the top left corner of the ROC curve. Ad-
ditionally, to measure the model’s out-of-sample predictive performance we compute the area
under the ROC curve (AUC). AUC lies between 0 and 1. A model with AUC of 0.5 is no better
than randomly guessing (random classifier) the class for an observation; a model with AUC less
than 0.5 performs worse than the random classifier; and a model with AUC greater than 0.5
demonstrates predictive capacity.

Figure 2: Confusion Matrix

5.4. Predictor Importance

Finally, we investigate the relative importance of features in determining whether a transac-
tion is fraudulent. In case of logistic regression, we use the statistical significance and the mag-
nitude of coefficient estimates to infer the relative importance of features. For random forests
and gradient boosted machines, we estimate the total decrease in node purity corresponding to
each predictor. The SVM algorithm does not naturally extend itself towards estimating feature
contribution, however, a heuristic can be constructed. This method, unfortunately, does not
provide consistent and reliable estimates. Therefore, we do not compute feature importance
for the SVM model. We choose the models estimated on hybrid-sampled dataset to compute
feature importance since these models outperform the models fitted on datasets resampled by
other techniques employed in this study.
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6. Results

This section presents our baseline empirical results. It then presents results of robustness
tests. We discuss the baseline results in subsection 6.1. The results of the robustness tests are
discussed in subsections 6.2 and 6.3.

6.1. Model Performance and Interpretation

We first determine whether the various country-level features employed in our study can
detect money-laundering at the financial institution. To meaningfully gauge the predictive ca-
pacity of these features, we first decompose our dataset into transactions involving private cus-
tomers (people-related) and corporate clients (corporate-related).14 We then train our models
on the country-level attributes of the people-related, corporate-related, and combined dataset
to estimate the out-of-sample performance of our models. We train 48 models; 4 machines
learning algorithms trained on 3 datasets (people-related, corporate-related and the combined
dataset) that are balanced by 4 balancing techniques. A randomized 50:50 split is performed on
the datasets to create training and test datasets.15 We further perform cross-validation to test
the validity of our models and estimate relative importance of various country-level features.

6.1.1. Predictive capacity of Country-level features

Table 3 shows the TPR, FPR, and AUC results of the models trained on the country-
level features of the three datasets. Our features include the Hofstede country-specific culture
dimensions and two institution quality indices for the customer’s country of residence and
origin/destination country of the wire.16 These features are: CPIR, CPIW , FSIR, FSIW ,
IDVR, IDVW , MASR, MASW , PDIR, PDIW , UAIR, and UAIW . For models trained on the
combined dataset, we note that the AUCs are in the 0.70-0.80 range. This demonstrates that
our models can discern between suspicious and legitimate transactions. We find that our models
can discern better for the corporate-related dataset with AUCs as high as 0.88. We further
find evidence for predictive capacity for the country-level features for the people-related data,
however, compared to the combined and corporate-related data, these results are modest with
AUCs in the 0.65-0.72 range.17 We further note that all the models trained on datasets balanced
by the hybrid-sampling technique consistently provide significant out-of-sample performance.
Additionally, we find that the RF and GBM models have the best out-of-sample performance
for all the three datasets balanced by the under- and hybrid-sampling techniques.

[Please insert Table 3 about here.]

14See Table 1 and Table A (Internet Appendices).
15Except in the case of cross validation, where 80:20 and 90:10 splits are performed.
16Please see Table 2 for concise definitions.
17We further train our models on the Hofstede country-specific culture dimensions, excluding the institution

quality indices. We report the models including only the national culture dimensions are comparable to models
including the institution quality indices as well. Please see Tables B1-B3 of the Internet Appendix B. These
may reflect that national culture and national governance are endogenously related. However, our objective is
to determine whether national culture is an effective predictor and whether there are important concomitant
ethical concerns. We do not aim to identify a causal relationship between national culture traits and malfeasance
in banks.
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6.1.2. Determining the validity of our models using cross-validation techniques

To determine the validity of our models we perform K-fold cross-validations. K-fold cross-
validation estimates how well a model generalizes to an independent dataset by dividing the
dataset into K equal parts, using one part as a hold-out test set, and training the model on
the remaining K-1 parts. This is then repeated K times, such that each of the K equal parts is
considered for a test dataset. The out-of-sample model performance is then computed as the
average of the K results. We perform 5- and 10-fold cross-validations, that is for each of the K
instances, we train our models on 80% and 90% of the datasets, balanced by the hybrid-sampling
method, respectively.18 We then estimate the out-of-sample performance on the remaining
20% and 10% of the datasets. In Table 4 we report the AUC metric, estimated by the cross-
validation technique, to measure performance for all the models. The results demonstrate that
the predictive capacity of country-level variables remain similar to that reported in Table 3.
The low standard deviation (σ) further attests to the reliability of our models.

[Please insert Table 4 about here.]

6.1.3. Investigating the relative importance of Country-level features in detecting

money-laundering
Table 5 presents the relative importance of our country-level features for the models trained

on the three datasets.19 We find that for both corporate-related and combined alerts, the
individuality rating of both the customer’s residence country (IDVR) and country of wire orig-
ination/destination (IDVW ) are of paramount importance. This is followed by the corruption
perception score of the country of wire origination/destination (CPIW ) and the customer’s res-
idence country (CPIR) for the corporate-related alerts; and (CPIW ) and the financial secrecy
score of the customer’s resident country (FSIR) for the combined alerts. For people-related
alerts, the corruption perception score for the country of wire origination/destination (CPIW )
and the financial secrecy score of the resident country (FSIR) are the two most important
features, followed by the CPIR and IDVR.

[Please insert Table 5 about here.]

6.2. Can we improve the predictive capacity of our models by enlarging the feature space?

In this section, we extend our feature space to include account- and transaction-level vari-
ables. We further include the proprietorial risk score (PROP) in our enlarged feature space to
assess the predictive capacity of our models.20

18We train our models on the three datasets balanced by the hybrid-sampling method since this method
results in models with high predictive accuracy across all the three datasets.

19We do not report feature importance results for the SVM model since there does not exist a reliable model-
specific feature importance method for SVM algorithm.

20All features are defined in Table 2.
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6.2.1. Predictive capacity of country-, account-, and transaction-level features in detecting
money-laundering

We further extend our feature space to include customers’ account- and transaction-level
information to determine whether we could improve the predictive capacity of our models. This
extends our feature space to include 24 features with 12 country-level features, 4 account-level
features, and 8 transaction-level features.21

Table 6 presents the TPR, FPR, and AUC scores for models trained on the enlarged feature
space. These models enhance the predictive capacity across all the models reported in Table
3, with AUCs ranging between 0.72-0.91, 0.83-0.94, and 0.60-0.85, on the combined, corporate-
related, and people-related datasets, respectively. We further note that the models trained on
the datasets balanced by the hybrid technique are better able to discern between a fraudulent
and non-fraudulent transaction with AUC scores between 0.75-0.91, 0.85-0.94, and 0.71-0.85
for the combined, corporate-, and people-related datasets, respectively. We report a significant
increase in the predictive capacity of our models across all the three datasets. We again find
that the RF and GBM models with under- and hybrid-sampling are the optimal models.

[Please insert Table 6 about here.]

6.2.2. Predictive capacity of country-, account-, and transaction-level features along with the
proprietorial risk score in detecting money-laundering

Finally, we include the proprietorial risk score, PROP Score, to our enlarged feature space
to determine whether its inclusion markedly enhances the predictive capacity of the mod-
els reported in Table 6. We report the out-of-sample performance of these models in Table
7. Interestingly, we find only a slight improvement, of approximately 1-2% on average, in
performance. This indicates that models with the country-, account- and transaction-level
information provide useful predictive power.

[Please insert Table 7 about here.]

6.3. Does national culture traits remain useful in the extended dataset?
In this section, we investigate whether the country-specific culture and institution quality in-

dices pertaining to customer’s residence country and the country of wire origination/destination
remain useful in detecting money-laundering in the enlarged feature space.

6.3.1. Does national culture traits remain useful in comparison with account-level and transaction-
level features?

We estimate feature importance for models reported in Table 6 to determine whether
country-level features of the customers provide useful predictive capacity in detecting fraudulent

21We include an additional feature, Customer Age, in the people-related models which extends the feature
set to include 25 predictors.
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wire transactions in the enlarged feature space. We present these results in Table 8. We note
that for corporate-related alerts, the county-level features that rank among the top five features
are the individuality rating of the customer’s country of residence (IDVR), individuality rating
of the country of wire origination/destination (IDVW ), and the uncertainty avoidance cultural
trait of the customer’s residence country (UAIR). We further find that the power-distance
index score of the customer’s residence country (PDIR) informs the customer’s predilections
for committing financial misconduct. For people-related alerts, the individuality score of the
customer’s residence country (IDVR), corruption perception score of the country of wire origi-
nation/destination (CPIW ), and financial secrecy score of the customer’s country of residence
(FSIR) are the most important county-level features that rank among the top ten features.
These results provide evidence of the usefulness of culture traits of customers for detecting both
corporate and individual malfeasance, however, the country-level features are more pronounced
in detecting corporate malfeasance than individual malfeasance.22 For the combined alerts, we
note that (IDVR), (IDVW ), and (FSIR) rank among the top ten features; further providing
evidence of the usefulness of the country-level features in detecting malfeasance.

[Please insert Table 8 about here.]

6.3.2. Does national culture traits remain useful in comparison with a proprietorial risk score
along with account- and transaction-level features?

Table 9 reports the feature importance for models reported in Table 7. For corporate-related
alerts, we again find that the individuality scores of both the country of the wire origina-
tion/destination (IDVW ) and customer’s resident country (IDVR) are important country-level
features. These features also rank among the top five features influencing a customer’s predilec-
tions for committing financial misconduct.We further note that the corruption perception score
of the country of wire origination/destination (CPIW ) and power-distance index score of the
customer’s residence country (PDIR) are among the top ten features. Interestingly, we find
that IDVW , IDVR, and CPIW have higher predictive capacity than the proprietorial risk score.
However, in case of people-related alerts, the PROP score is the most important feature. This
suggests that the proprietary algorithm, used by the financial institution, is more effective in
detecting fraudulent transactions pertaining to individual accounts than for corporate accounts.
Further, in case of people-related alerts, the financial secrecy score of the customer’s residence
country (FSIR), corruption perception score of the customer’s residence country (CPIR), and
corruption perception score of the country of wire origination/destination (CPIW ) rank among
the top ten features in detecting money-laundering in our models. For the combined alerts,
the features that influence the models in decreasing order are IDVW , PROPscore, IDVR, and
FSIR. These features also rank among the top ten features. In addition to results reported in
Table 8, these results further underline the usefulness of adopting country-specific features to
complement current account and transaction variables for AML monitoring.

22In the Internet Appendices, Tables C1-C3, we also report results using the Schwarz cultural variables in
lieu of the Hofstede variables in our models. The Schwarz cultural model uses 3 dimensions to measure culture,
see Internet Appendix C for further details.

24



[Please insert Table 9 about here.]

7. Discussion and Ethical Framework

At least since Donaldson and Dunfee (1994), scholars have acknowledged that business ethics
research while informed by empirical ideas, can also be informed by normative concepts, by
prescriptive ideas which, although not necessarily approachable by empirical analysis, suggest
what societies should do. Indeed, they indicate that empirical analysis is often not the appro-
priate tool to determine what societies “ought” to do (see also Sorley (1885)). As a result, the
attainment of money laundering out-of-sample predictive accuracy alone, as established in this
paper, is an inadequate reason for the deployment of a machine learning alert model.

The potential for unethical repercussions related to AI applications, especially those which
inform decisions to impact people, is immense. Examples include recruitment, promotion, flight
risk and cessation of employment algorithms as well as credit extension, insurance risk scoring
and dynamic pricing algorithms, among many others. Fraud detection, informed with machine
learning, arguably falls on the lower end of the spectrum of potentially unethical AI – after all
its aim is to mitigate financial malfeasance. Nevertheless, it is critically important to consider
the societal ramifications of using national background as a prompt for further scrutiny of
individuals.

With a view, hence, to “giving voice to values” (Arce and Gentile, 2015), we seek to identify
the ethical considerations of incorporating profiling, whether intentional or not, within machine
learning algorithms. We discuss ethical issues pertinent to the use of national culture in machine
learning in general and money-laundering alert models in particular.

We frame our discussion around a number of ethical discussion: 1) Do public good concerns
in countering money laundering outweigh ‘collective treatment’ concerns in national profiling
in algorithms? 2) Do those producing the alerts have permission to use the personal data?
3) Who is responsible for the design of an algorithm? 4) Are algorithms accountable? 5)
Are the algorithms used for detection, or, alternatively, for prediction?—and are there subtle
distinctions regarding this?; 6) Are alert models reflective of global, national or sub-national;
public or private regulation?; 7) Do the algorithms in use exacerbate tangential societal biases?
and 8) Can the deployment of an algorithm, due to automation, transform the workplace?

7.1. Do public good concerns in countering money laundering outweigh ‘collective treatment’
concerns in national profiling in algorithms?

Alter and Darley (2009) define ‘collective treatment’ as the act of behaving toward more than
one individual uniformly. Collective treatment is distinguished from individualized treatment,
in which individuals are treated differently from one another according to relevant criteria. An
example is punishing a gang for being offenders as opposed to prosecuting individuals accord-
ing to their relative contributions to a crime. As noted by Alter and Darley (2009), collective
treatment relies on people who share salient features being treated as interchangeable members
of a group defined by those features. Of course, as noted Brewer and Harasty (1996); Camp-
bell (1958); Dasgupta, Banaji, and Abelson (1999) and many others, such salient features can
include race, ethnicity, socioeconomic status, religion, physical appearance, relative income,
and whether and individual has a disability. Clearly, we can add to these ways of grouping
individuals’ national culture, especially as pertaining to alert models designed to detect fraud.
However, while one of the prominent dangers of collective treatment is that it can be admin-
istered by individuals in authority to reward, punish, or restrict the rights of a group within

25



a population. For instance, a judge who sentences a gang of criminals rather than individuals
etc. One advantage of machine-learning-based alert models is that it avoids the situation of
individuals choosing to impose or not to impose collective treatment in arbitrary circumstances.

7.2. Do those producing the alerts have permission to use the personal data?

Simply because it is legal to gather and mine certain data does not make it ethical. ‘Ethics’
regards sets of moral codes beyond legally required minimums. With regard to the mining of
data, inherent with machine learning procedures, questions of an ethical nature invariably arise.

Whether the institution conducting machine learning is allowed to use the data incorporated
into its algorithms is both an important legal issue, as well as an ethical issue. There may be
legal barriers to using particular data. But there are ethical issues that extend beyond simple
legality. In many cases, machine learning can employ data that they might not have proper
permissions to use. As noted by Adomavicius and Tuzhilin (2001), data mining with regard
to individuals has been seen as either ‘factual’, who the customer is, or ‘transactional’, what
the customer has done or is doing (see also Cook, 2008). Adomavicius and Tuzhilin (2001)
suggest the latter is more commonly used for criminal identification; as well as more commonly
objected to as an intrusion into individual privacy. However, in the money laundering alert
model highlighted in this paper, we suggest that simply using primarily data about who the
customer is, i.e., the customer’s home country, is sufficient to generate area-under-the-curve
predictions that are almost 90 percent. So, one potential advantage of using national culture as
a predictor is to avoid more intrusive gathering of customer behavior. Use of national culture
avoids issues of using personal data. The sweeping aggregate generality of national culture
avoiding invasive use, likely without permission, of individual characteristics. In this regard,
with respect to including national culture in machine-learning models, a relevant question is,
if not national factors, then what level of factors? And what would be the alternative set of
implications? Overall, with regard to permissions to use data, national culture, while arguable
a rough profiling of people from respective nations, avoids the use more individual and likely
personal data. In summary though, an ethical minefield is established between use of sweeping
generalities, and the potential invasion of privacy by collecting personal, often transactional,
data.

7.3. Who is responsible for algorithmic design?

In this vein (Martin, 2019), while making a strong case for developers of algorithms having
responsibility for how they are used, lists a number of examples from news sources highlighting
disturbing ways algorithms can be used. These include predicting whether you are a terrorist,
what you will pay for an online product that is presented with bespoke pricing to individual
online users, whether you will receive a loan, or if an incarcerated inmate will receive parole,
among many examples. We also discuss and highlight further in this paper, a number of
contexts in which ‘profiling’ has been identified as being unfair and detrimental to the social
fabric.

It is worth considering the question of whether authors of academic studies are also re-
sponsible for the use of presented ideas and findings. This seems too much of an extension,
to consider academic researchers responsible for algorithms subsequently developed in part be-
cause of their findings— and a point of view that would certainly inhibit scholarly investigation.
However, we as authors are concerned that the evidence presented in this paper, that national
factors, particularly national culture, may be particularly efficacious in money laundering alert
models, and may have various moral consequences. As noted by Martin (2019), algorithms
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are inherently value laden and need to be constructed to preserve stakeholder’s “rights and
dignity.”

7.4. Are algorithms accountable?

Another concern with use of machine learning is algorithmic accountability, as noted pre-
viously (e.g., Buhmann, Paßmann, and Fieseler, 2019; Martin, 2019; Seele et al., 2019) . This
includes concern over how algorithms are established, in terms of what hypotheses, either explic-
itly or implicitly are formed. However, from an alternative perspective, algorithm transparency
also provides criminals with insight into the factors used in respective algorithms, facilitat-
ing subsequent avenues of evasion. However, with respect to national culture, how well could
knowledge of the inclusion of national culture in an alert algorithm be gamed by would-be illicit
actors? Would this encourage actors to channel banking transactions through other countries
with differing identified cultural characteristics? Do clever money launderers already know that
culture is being used to help establish money-laundering alerts? Overall, it may be that being
transparent about the use of national culture in machine-learning algorithms is less inherently
exploitable than transparency about other details of algorithms.

7.5. Are the algorithms used for detection, or, alternatively, for prediction?—and are there
subtle distinctions regarding this?

Another fundamental distinction, that touches on the ethics of algorithms in the use of
machine-learning, is whether alert procedures are to be used in detection or, alternatively, in
prediction. The also involves broader issues of the implications of ex ante or ex post investi-
gation. Depending on the context, prediction can lead, or not lead, to particular consequential
actions. For instance, an algorithm to predict personal loan default might lead a person being
denied financing (Fuster et al., 2018). On the other hand, a prediction algorithm to identify
possible bank fraud might lead to time and resources being devoted to simply closer scrutiny.
In this regard, using machine learning to detection money-laundering, as in the example of this
paper, could be viewed, as simply reducing the costs of detection, rather than establishing an
unfair barrier to banking inclusion.

In contrast, using machine learning for the purpose of prediction of what might take place
creates identifiable issues of fairness. For instance, there is the highly controversial practice
in the US of using ethnic and racial profiling in prediction of whether prison inmates under
consideration for parole will recidivate (Hartney, 2009). This has even been extended to machine
learning algorithms (Berk, 2017; Lee, 2018). Examples such as this display an obvious unfairness
and social injustice. This is inherently different than the context of identifying whether money-
laundering has already taken place. Or is it so different? Certainly, there is the possibility of
organizations transferring usage of algorithms from detection to pre-emption. In which case,
factors included in detection are now used to unfairly exclude. Further, identifying persons from
particular countries in the context of global regulation appears at least somewhat differently
than law enforcement in a particular country or sub-national component of a country targeting
certain citizens based on demographic characteristics for additional scrutiny. Or is a case of
global regulation being that different? Certainly, this issue beckons much further reflection.

Of additional concern, the distinction between detection and prediction becomes blurred for
situations where ‘everyone’ is doing a particular illegal action. For instance, it is not uncommon
on many of the interstate highways in the US, where speed cameras are generally not used as
widely as in other countries, for the great majority of drivers to be driving over the speed
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limit. However, it is generally regarded that in the US African American drivers are much
more likely to be pulled over by the police (Harris, 1996). This could be due to racial prejudice
of course. But a commonly put forth reasoning for this is that speeding African American
drivers are also greater opportunities for law enforcement to discover other violations because
of a higher percentage of African Americans having criminal records. This obviously fuels a self-
fulfilling prophecy. Another example is the controversial practice of the US Internal Revenue
Service (IRS) in US paying closer scrutiny to vocal anti-tax groups when these groups apply for
tax-exempt status. On the one hand, this practice could be viewed as the targeting political
opposition to the government. On the other hand, is it not reasonable to consider vocal anti-tax
groups as more likely to evade taxes? Pulling over African Americans for traffic violations has
obvious aspects of intimidation and social repression. Greater scrutiny of the taxes of groups
with a particular political orientation presents similar concerns.

Global regulation that focuses more on some countries than others seems is arguably a
different context than inflection of legal authority unevenly within a particular country or sub-
national jurisdiction. Perhaps because global monitoring, as with money-laundering alerts, is
often in the realm of the private sector. Consequently, much of the social unfairness of the public
sector isolating groups within a society is avoided. On the other hand, if we consider the world
as an increasingly globalized society then such distinctions lessen. It is arguable that private
global firms do have a governance role and that such a role needs to be evenly administered.
An interesting parallel is the openly disclosed pillar of the microfinance industry to focus on
women borrowers. In other words, to be less inclined to grant loans to men (Aggarwal, J. W.
Goodell, and Selleck, 2015). This is put forward as micro-finance to women, as opposed to
men, will offer greatly societal outreach benefits, and that women are more reliable to pay back
micro-finance obligations. Perhaps identifying a particular gender as more likely to repay a
loan is not fundamentally different from identifying people of a particular national cultures as
more likely to repay loans—or, the subject of this study, more or less likely to conduct money
laundering.

Issues of social fairness become much more glaring however, when we consider the wide
variety of research that seeks to model national at a sub-national level with demographic,
particularly religion data. For instance, Baxamusa and Jalal (2014) model religion as indicating
levels of what national culture would describe as uncertainty avoidance. A significant problem
with using national culture in algorithms is that there is the potential for biases about particular
national cultures to diffuse to sub-national levels.

7.6. Do the algorithms in use exacerbate tangential societal biases?

Another concern is whether the respective machine-learning algorithm is incorporating fac-
tors that tangentially engender implicit biases? An example of this is provided by Williams,
Nathanson, and Paulhus (2010), who highlight a case of low verbal skills being identified for
greater likelihood of scholastic cheating. Clearly, this identification can foster attitudes of bias
against immigrant communities or others with generally lower skills in the given language of
instruction. Or can establish bias against those with speech impediments for instance. Do
algorithms that incorporate national culture foster prejudice? The study we highlight in this
paper for instance suggests people from more individualist countries are more likely to engage
in money laundering. Consider the roles of profiling by national culture in other contexts. For
instance, profiling potential CEOs or board members as to whether they would be advocates of
CSR, or whether they have optimal demographic characteristics (S. G. Johnson, Schnatterly,
and Hill, 2013) Would certain CEO candidates be disfavored or disqualified because of their
country of origin or ethnic background?
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7.7. Can the deployment of an algorithm, due to automation, transform the workplace?

????
Clearly, the use of national culture in bank alert models provides some predictive accuracy,

while it at the same time raises a number of important social and ethical issues. We hope this
paper invites further analysis and discussion of this important issue.

8. Conclusions

In light of the recent scandals involving major international banks such as Danske Bank
and Swedbank, we see greater focus placed upon AML policy and a need for innovation in
the current protocols than monitor and detect suspicious activity that may be an indicator of
money laundering or fraud. A growing field of research looks at the cultural and behavioral
aspects that govern decisions at the institutional level especially in the corporate and financial
domain. Our paper uses this research to inform and improve current practice in AML policy
for financial institutions.

Using our data set of over 200,000 international wire transactions collected over a ten year
period, we build machine learning models that reference the levels of corruption and financial
secrecy in a country, as well as the cultural measures of individualism, masculinity, power-
distance and uncertainty avoidance. We find that, on top of the industry standard account-
and transaction-level variables, these country-level variables greatly improve our models pre-
dictive power, particularly in the category of corporate accounts. Using the machine learning
algorithms to estimate the relative importance of the predictors in the most successful models,
we find that individualism scores for the customer’s resident country, as well as the individu-
alism score for the wire’s country of origin/destination, are by far the most important of the
country-level variables and indeed all the variables outright, for the models involving corporate
accounts. As for the personal account models, the corruption perception score for the wire’s
country of origin/destination and the financial secrecy score for the customer’s resident coun-
try prove to be the most important country-level variables, with other predictors outside of
country-level variables proving important overall in predicting the incidence of suspicious wire
activity. Overall, however, our results suggest that country-level data, particularly national
culture scores of either the sender or receiver of wire transfers, either alone, or in combination
with measures of control of corruption and financial secrecy, provide highly effective prediction
modelings. Given the societal implications long identified regarding ’collective treatment,’ or
results provoke considerable reflection on the ethical concerns of using country-level variables
by financial institutions to form money laundering alert models.

Our findings indicate the importance of cultural and behavioral measures when considering
the potential for money laundering and fraud in international money movement, especially when
it comes to corporate activity and provide strongly predictive models for capturing such be-
haviour. Furthermore, the models applied to the segregated data sample (corporate account vs.
individual account) demonstrate rather distinct differences in terms of predictive performance
as well as feature importance. Practitioners can benefit from making careful configurations
regarding sample segmentation as well as feature selection. Applying a more contextual brush
to current AML surveillance practices may prove a valuable resource in the fight against money
laundering and fraud worldwide.

In light of our findings, we examine the ethical issues of incorporating country factors,
especially national culture, in machine learning applications, illustrating the potency of such
factors to inform bank alert models. The use of machine-learning algorithms is expanding
rapidly across the globe in a host of assessment and prediction contexts. Catalyzed by recent
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events, the ethical implications of profiling are now of great interest. The ethical implications
of ascribing values, against a global standard, to national culture qualities, long done in the
literature, needs further consideration, especially now, given their likely future inclusion in ma-
chine learning applications. Examining detection of money laundering at a globally important
financial institution, we avail of binary classifier type alert models, together with corrections
for data imbalance, to show the surprising utility of national culture in formulating anti-money
laundering predictions. For corporate (individual) accounts, Hofstede Individuality (Individu-
ality, and national-level corruption perception and financial secrecy) scores of the country in
which a customer is resident, or from which a wire is sent/received, are the most important
factors. National culture alone provides a high degree of predictive power. And when com-
bined with extensive account and transaction data; as well as even proprietary institutional
algorithms already in use, its inclusion greatly enhances predictive ability. While discussing
these results, we offer a framework for considering the ethical implications of incorporating
profiling information into predictive machine learning models. We frame our discussion around
a number of important distinctions: 1) Do those conducting alerts have permission to use data?
2) Are algorithms transparent? 3) Are the algorithms used for detection or alternatively for
prediction?—and are there subtle distinctions regarding this?; 4) Are alert models reflective of
global, national or subnational; public or private regulation? And 5) Do the algorithms in use
encourage tangential societal biases?

We conclude that inclusion of national culture in machine-learning algorithms both avoids
some common ethical shortcomings; as well as invites ethical concerns. In our discussion we
consider that context matters, offering an outline of when collective treatment by financial in-
stitutions may result in greater ethical costs. The use of national culture in machine learning
algorithms can serve a global public good by nature of its efficacy, but there is also a cost to the
global public good because of a broad set of ethical concerns regarding collective treatments.
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Tables

Table 1: Data Cross-section and Sample Selection

Panel A: Alerts and Issue Cases by Year

Combined Corporate People

Year #Alerts #Issues #Alerts #Issues #Alerts #Issues
2009 22,183 878 5,752 448 16,431 430
2010 23,154 485 6,643 215 16,511 270
2011 20,335 216 6,193 68 14,142 148
2012 18,572 143 5,298 29 13,274 114
2013 21,088 205 5,984 71 15,104 134
2014 11,098 87 2,617 41 8,481 46
2015 11,468 34 2,937 7 8,531 27
2016 11,779 71 2,841 14 8,938 57
2017 9,885 76 2,771 19 7,114 57
2018 4,355 11 1,236 2 3,119 9

Total 153,917 2,206 42,272 914 111,645 1,292

Panel B: Sample Selection

Combined Corporate People

Selection Criteria #Alerts #Issues #Alerts #Issues #Alerts #Issues
All Alerts 206,751 2,440 42,272 914 111,645 1,292

Corp & Ppl Accounts 153,917 2,206 42,272 914 111,645 1,292
Country-level Variables 74,832 1,183 30,303 524 44,529 659

Account/Transaction-level Variables 74,246 1,172 30,292 524 43,954 648

Notes: The table reports the cross-section of our data (Panel A) and the sample selection (Panel B).
An alert is raised when a customer’s wire activity raises certain flags and an Issue case indicates that the
subsequent investigation has deemed the activity to be highly suspicious. The sample selection shows the
number of alerts available our data set according to each criterion, applied in sequence. A more detailed
description of our variables is available in Table 2.
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Table 2: Predictor Details

Predictor Details Abbreviation

COUNTRY-LEVEL

Corruption Perception Index Score of customer’s residence country (R) and country of
origin/destination of wire (W) according to Transparency
International’s Corruption Perception Index.

CPIR / CPIW

Financial Secrecy Index Score of customer’s residence country (R) and country of
origin/destination of wire (W) according to Transparency
International’s Financial Secrecy Index.

FSIR / FSIW

Individualism Index Score of customer’s residence country (R) and country
of origin/destination of wire (W) based on Hofst-
ede’s “Individualism” dimension of culture.

IDVR / IDVW

Masculinity Index Score of customer’s residence country (R) and country
of origin/destination of wire (W) based on Hofst-
ede’s “Masculinity” dimension of culture.

MASR / MASW

Power-Distance Index Score of customer’s residence country (R) and country
of origin/destination of wire (W) based on Hofstede’s
“Power-Distance” dimension of culture.

PDIR / PDIW

Uncertainty Avoidance Index Score of customer’s residence country (R) and country
of origin/destination of wire (W) based on Hofstede’s
“Uncertainty Avoidance” dimension of culture.

UAIR / UAIW

ACCOUNT-LEVEL

Customer Age Age of customer associated with alert, at time of alert. CUS AGE
Account Age Age of account associated with alert, at time of alert. ACC AGE
Customer Net Worth Net Worth of customer associated with alert NET WRTH
Alert Supplier Code Code denoting source of alert, whether alert is

generated by Business or Retail transactions.
SUPP CO

TRANSACTION-LEVEL

Amount Transfers In Aggregate amount of incoming wire and electronic
transfers over 180 days before alert.

ΣTFI180

No. Transfers In Number of incoming wire and electronic trans-
fers over 180 days before alert.

#TFI180

Amount Transfers Out Aggregate amount of outgoing wire and electronic
transfers over 180 days before alert.

ΣTFO180

No. Transfers Out Number of outgoing wire and electronic trans-
fers over 180 days before alert.

#TFO180

Amount Checks In Aggregate amount of incoming checks over 180 days before alert. ΣCKI180
No. Checks In Number of incoming checks over 180 days before alert. #CKI180
Amount Checks Out Aggregate amount of outgoing checks over 180 days before alert. ΣCKO180

No. Checks Out Number of outgoing checks over 180 days before alert. #CKO180

Proprietary

PROP Score Risk score based on proprietary alert algo-
rithm of financial institution.

PROP

Notes: The table reports the complete set of predictors used in our models along with their definitions and abbreviations
for reference. The “Wire” variables refer only to the wire transactions on the day of an alert whereas the “Transfer” and
“Check” variables refer to all relevant transactions appearing on accounts associated with an alert in the 180 day period
preceding that alert.
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Table 3: Country-level Models

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.70 0.43 0.722 0.89 0.50 0.845 0.59 0.42 0.670
Under-sampling 0.76 0.49 0.727 0.90 0.51 0.850 0.61 0.43 0.664
Hybrid-sampling 0.76 0.50 0.726 0.90 0.47 0.851 0.58 0.40 0.670
Synthetic-sampling 0.71 0.43 0.723 0.92 0.53 0.861 0.60 0.41 0.659

RF No Balancing 1.00 1.00 0.543 1.00 1.00 0.674 1.00 1.00 0.505
Under-sampling 0.71 0.40 0.741 0.89 0.41 0.875 0.66 0.41 0.702
Hybrid-sampling 0.65 0.31 0.726 0.88 0.34 0.878 0.66 0.41 0.695
Synthetic-sampling 1.00 1.00 0.696 1.00 1.00 0.859 1.00 1.00 0.641

SVM No Balancing 0.53 0.47 0.521 0.42 0.42 0.504 0.62 0.56 0.516
Under-sampling 0.78 0.60 0.704 0.88 0.59 0.805 0.66 0.44 0.660
Hybrid-sampling 0.68 0.50 0.662 0.88 0.59 0.807 0.68 0.47 0.636
Synthetic-sampling 0.77 0.51 0.645 0.89 0.60 0.816 0.59 0.41 0.610

GBM No Balancing 0.87 0.60 0.768 0.91 0.49 0.878 0.84 0.56 0.719
Under-sampling 0.87 0.59 0.770 0.85 0.41 0.870 0.83 0.57 0.708
Hybrid-sampling 0.74 0.40 0.771 0.90 0.43 0.881 0.83 0.55 0.716
Synthetic-sampling 0.68 0.41 0.724 0.94 0.60 0.868 0.73 0.57 0.660

Notes: The table reports the performance of our Country-level model using logistic regression (LR), random forest (RF), support
vector machine (SVM) and gradient boosting (GBM) in combination with no balancing, under-sampling, hybrid-sampling and
synthetic-sampling, respectively. The performance is measured using True Positive Rate (TP Rate), False Positive Rate (FP
Rate) and Area under the ROC Curve (AUC). The data sample comprises of 74,724 alerts (30,292 corporate-related and 43,954
people-related) with 1,183 Issue cases (524 corporate-related and 648 people-related). The model has 12 predictors.
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Table 4: Cross-validation for Country-level Models with Hybrid-sampling.

Panel A: 5-Fold Cross-validation on AUC scores

Combined Corporate People

Round LR RF SVM GBM LR RF SVM GBM LR RF SVM GBM

1 0.717 0.722 0.656 0.765 0.758 0.774 0.785 0.813 0.658 0.662 0.594 0.683
2 0.726 0.726 0.705 0.777 0.856 0.862 0.811 0.896 0.674 0.706 0.663 0.724
3 0.737 0.729 0.705 0.766 0.861 0.873 0.829 0.902 0.671 0.675 0.598 0.709
4 0.743 0.739 0.678 0.789 0.852 0.872 0.842 0.887 0.660 0.681 0.606 0.723
5 0.762 0.768 0.725 0.797 0.820 0.848 0.833 0.874 0.677 0.733 0.688 0.746

µ 0.737 0.737 0.694 0.779 0.829 0.846 0.820 0.874 0.668 0.691 0.630 0.717
σ 0.017 0.019 0.027 0.014 0.043 0.041 0.023 0.036 0.009 0.028 0.043 0.023

Panel B: 10-Fold Cross-validation on AUC scores

Combined Corporate People

Round LR RF SVM GBM LR RF SVM GBM LR RF SVM GBM

1 0.769 0.757 0.721 0.799 0.870 0.902 0.865 0.915 0.655 0.692 0.571 0.708
2 0.777 0.770 0.760 0.814 0.798 0.811 0.780 0.864 0.664 0.697 0.570 0.718
3 0.719 0.722 0.674 0.761 0.823 0.818 0.804 0.870 0.651 0.677 0.595 0.702
4 0.746 0.754 0.720 0.812 0.820 0.824 0.823 0.844 0.689 0.672 0.622 0.685
5 0.710 0.693 0.692 0.762 0.810 0.819 0.810 0.867 0.670 0.657 0.570 0.746
6 0.754 0.726 0.714 0.763 0.870 0.867 0.818 0.907 0.686 0.761 0.642 0.774
7 0.743 0.736 0.696 0.769 0.866 0.888 0.847 0.917 0.691 0.735 0.683 0.766
8 0.726 0.740 0.713 0.786 0.807 0.850 0.819 0.869 0.653 0.651 0.550 0.669
9 0.724 0.736 0.738 0.769 0.847 0.865 0.804 0.877 0.648 0.660 0.572 0.670
10 0.729 0.728 0.702 0.775 0.807 0.854 0.788 0.894 0.700 0.738 0.663 0.750

µ 0.740 0.736 0.713 0.781 0.832 0.850 0.816 0.882 0.671 0.694 0.604 0.719
σ 0.022 0.021 0.024 0.021 0.029 0.031 0.025 0.025 0.019 0.038 0.046 0.039

Notes: The table reports the AUCs for 5-fold and 10-fold cross-validation for the hybrid-sampled Country-level model with logistic regression (LR),
random forest (RF), support vector machine (SVM) and gradient boosting (GBM). The data sample comprises of 82,964 alerts (30,303 corporate-related
and 44,529 people-related) with 1,240 Issue cases (524 corporate-related and 659 people-related). The model has 12 predictors.
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Table 5: Country-level Predictor Importance for Country-level Model with Hybrid-sampling

Combined Corporate People

Predictor LR RF GBM Ave. LR RF GBM Ave. LR RF GBM Ave.

CPIR * 5 5 5 *** 5 4 4 *** 3 3 3
FSIR *** 6 3 4 · 8 6 8 *** 1 2 2
IDVR *** 1 1 1 *** 1 1 1 *** 2 4 4
MASR *** 9 6 8 9 11 9 *** 9 8 8
PDIR *** 4 7 6 *** 4 7 5 *** 6 6 5
UAIR *** 8 10 9 *** 7 5 6 *** 8 7 7
CPIW *** 3 4 3 *** 3 3 3 *** 4 1 1
FSIW 12 8 11 *** 10 12 12 * 12 11 12
IDVW 2 2 2 *** 2 2 2 *** 7 12 11
MASW *** 10 11 10 11 10 10 5 10 9
PDIW *** 7 9 7 * 6 8 7 *** 11 9 10
UAIW *** 11 12 12 *** 12 9 11 *** 10 5 6

Notes: The table reports the importance of the Country-level predictors by ranking for the Hybrid-sampled Country-level model
applied to the full sample (combined) and its partitions (Corporate & People accounts). Estimates of importance are obtained
from the logistic regression (LR), random forest (RF), gradient boosted model (GBM) algorithms. A weighted average of RF
and GBM (Ave.) is included. For LR, ***,**,* and · denote 0.1%, 1%, 5% and 10% levels of significance. RF and GBM are
both tree-based algorithms and so their estimates are based on the mean decrease in the Gini index of each node across all
trees. The Gini index measures node impurity. The data sample comprises of 82,964 alerts (30,303 corporate-related and 44,529
people-related) with 1,240 Issue cases (524 corporate-related and 659 people-related). The model has 12 predictors.
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Table 6: Country, Account & Transaction-level Models

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.72 0.44 0.740 0.84 0.41 0.836 0.73 0.46 0.714
Under-sampling 0.73 0.41 0.747 0.90 0.46 0.849 0.74 0.48 0.706
Hybrid-sampling 0.72 0.42 0.747 0.90 0.54 0.846 0.69 0.43 0.712
Synthetic-sampling 0.71 0.42 0.740 0.87 0.52 0.831 0.74 0.49 0.685

RF No Balancing 0.96 0.53 0.908 0.92 0.28 0.930 1.00 1.00 0.842
Under-sampling 0.93 0.48 0.895 0.97 0.55 0.932 0.91 0.59 0.835
Hybrid-sampling 0.94 0.47 0.911 0.96 0.41 0.938 0.88 0.49 0.848
Synthetic-sampling 1.00 1.00 0.772 0.89 0.42 0.877 1.00 1.00 0.638

SVM No Balancing 0.88 0.51 0.835 0.91 0.59 0.881 0.73 0.48 0.737
Under-sampling 0.89 0.51 0.801 0.95 0.54 0.880 0.79 0.57 0.739
Hybrid-sampling 0.86 0.43 0.845 0.90 0.53 0.886 0.72 0.53 0.722
Synthetic-sampling 0.65 0.41 0.723 0.86 0.52 0.847 0.55 0.40 0.603

GBM No Balancing 0.88 0.47 0.842 0.93 0.59 0.880 0.84 0.57 0.769
Under-sampling 0.93 0.53 0.853 0.95 0.40 0.916 0.82 0.40 0.799
Hybrid-sampling 0.87 0.41 0.863 0.93 0.40 0.921 0.83 0.47 0.799
Synthetic-sampling 0.67 0.40 0.717 0.88 0.40 0.846 0.76 0.55 0.652

Notes: The table reports the performance of our Country, Account & Transaction-level model using logistic regression (LR), random forest
(RF), support vector machine (SVM) and gradient boosting (GBM) in combination with no balancing, under-sampling, hybrid-sampling
and synthetic-sampling, respectively. The performance is measured using True Positive Rate (TP Rate), False Positive Rate (FP Rate) and
Area under the ROC Curve (AUC). The data sample comprises of 74,246 alerts (30,292 corporate-related and 43,954 people-related) with
1,182 Issue cases (524 corporate-related and 648 people-related). The model has 24 predictors.

36



Table 7: Country, Account & Transaction-level Models with PROP Score

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.77 0.48 0.754 0.82 0.40 0.840 0.79 0.47 0.733
Under-sampling 0.78 0.45 0.763 0.91 0.49 0.848 0.79 0.47 0.734
Hybrid-sampling 0.77 0.44 0.764 0.90 0.58 0.851 0.76 0.46 0.733
Synthetic-sampling 0.79 0.47 0.756 0.86 0.47 0.834 0.83 0.56 0.723

RF No Balancing 0.89 0.40 0.894 0.95 0.33 0.946 1.00 1.00 0.845
Under-sampling 0.87 0.43 0.878 0.95 0.40 0.943 0.91 0.57 0.846
Hybrid-sampling 0.92 0.44 0.901 0.97 0.44 0.952 0.83 0.41 0.855
Synthetic-sampling 0.90 0.58 0.790 0.88 0.43 0.873 1.00 1.00 0.690

SVM No Balancing 0.87 0.50 0.828 0.89 0.54 0.883 0.78 0.59 0.742
Under-sampling 0.88 0.57 0.789 0.94 0.51 0.896 0.81 0.57 0.753
Hybrid-sampling 0.88 0.53 0.833 0.91 0.57 0.896 0.75 0.54 0.731
Synthetic-sampling 0.78 0.56 0.745 0.83 0.41 0.848 0.65 0.49 0.667

GBM No Balancing 0.89 0.56 0.829 0.92 0.58 0.886 0.91 0.57 0.818
Under-sampling 0.87 0.43 0.850 0.94 0.40 0.922 0.91 0.51 0.828
Hybrid-sampling 0.87 0.42 0.855 0.96 0.55 0.926 0.83 0.40 0.828
Synthetic-sampling 0.74 0.48 0.709 0.88 0.48 0.840 0.80 0.58 0.689

Notes: The table reports the performance of our Country, Account & Transaction-level model, with the PROP score variable included, using
logistic regression (LR), random forest (RF), support vector machine (SVM) and gradient boosting (GBM) in combination with no balancing,
under-sampling, hybrid-sampling and synthetic-sampling, respectively. The performance is measured using True Positive Rate (TP Rate),
False Positive Rate (FP Rate) and Area under the ROC Curve (AUC). The data sample comprises of 74,724 alerts (30,292 corporate-related
and 43,954 people-related) with 1,182 Issue cases (524 corporate-related and 648 people-related). The model has 25 predictors.
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Table 8: Absolute Country-level Predictor Importance for Country, Account & Transaction-level Model with Hybrid-sampling

Combined Corporate People

Predictor LR RF GBM Ave. LR RF GBM Ave. LR RF GBM Ave.

CPIR 12 18 17 *** 12 18 12 *** 14 13 13
FSIR *** 8 6 7 14 12 14 *** 9 9 9
IDVR 5 1 1 *** 2 1 1 *** 7 1 2
MASR *** 15 11 13 *** 15 19 16 *** 12 17 16
PDIR *** 11 12 11 *** 9 10 10 · 16 19 17
UAIR *** 13 16 15 *** 5 4 4 · 15 14 15
CPIW *** 17 7 10 *** 10 14 11 *** 17 4 7
FSIW *** 21 17 20 16 20 20 ** 23 22 24
IDVW *** 10 4 5 4 2 3 *** 20 24 22
MASW * 18 21 19 18 17 19 18 23 21
PDIW *** 22 20 21 13 13 13 *** 24 21 23
UAIW *** 23 23 23 *** 21 23 21 21 15 18

Notes: The table reports the importance of the Country-level predictors by absolute ranking for the Hybrid-sampled Country,
Account & Transaction-level model applied to the full sample (combined) and its partitions (Corporate & People accounts).
Estimates of importance are obtained from the logistic regression (LR), random forest (RF), gradient boosted model (GBM)
algorithms. A weighted average of RF and GBM (Ave.) is included. For LR, ***,**,* and · denote 0.1%, 1%, 5% and 10% levels
of significance. RF and GBM are both tree-based algorithms and so their estimates are based on the mean decrease in the Gini
index of each node across all trees. The Gini index measures node impurity. The data sample comprises of 74,246 alerts (30,292
corporate-related and 43,954 people-related) with 1,182 Issue cases (524 corporate-related and 648 people-related). The model
has 24 predictors.
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Table 9: Absolute Country-level Predictor Importance for Country, Account & Transaction-level Model with Hybrid-sampling and PROP Score included

Combined Corporate People

Predictor LR RF GBM Ave. LR RF GBM Ave. LR RF GBM Ave.

PROP *** 5 3 3 *** 7 10 9 *** 4 1 1
CPIR 12 11 12 *** 14 12 13 *** 10 6 8
FSIR *** 9 6 8 15 14 15 *** 8 4 7
IDVR 8 4 5 *** 3 2 2 *** 13 12 13
MASR *** 19 17 17 *** 17 18 19 *** 15 13 16
PDIR *** 14 20 18 *** 11 8 10 · 14 16 15
UAIR *** 13 14 13 *** 12 11 11 · 17 17 17
CPIW *** 18 10 11 *** 13 6 6 *** 18 5 10
FSIW *** 24 19 21 16 17 17 ** 24 20 24
IDVW *** 11 1 2 2 1 1 *** 21 24 21
MASW * 16 22 20 18 16 16 20 25 20
PDIW *** 21 21 22 8 23 14 *** 25 19 25
UAIW *** 23 23 23 *** 22 20 22 23 21 22

Notes: The table reports the importance of the Country-level predictors by absolute ranking for the Hybrid-sampled Country,
Account & Transaction-level model applied to the full sample (combined) and its partitions (Corporate & People accounts) with
the PROP score variable included. Estimates of importance are obtained from the logistic regression (LR), random forest (RF),
gradient boosted model (GBM) algorithms. A weighted average of RF and GBM (Ave.) is included. For LR, ***,**,* and ·
denote 0.1%, 1%, 5% and 10% levels of significance. RF and GBM are both tree-based algorithms and so their estimates are based
on the mean decrease in the Gini index of each node across all trees. The Gini index measures node impurity. The data sample
comprises of 74,724 alerts (30,292 corporate-related and 43,954 people-related) with 1,182 Issue cases (524 corporate-related and
648 people-related). the model has 25 predictors.
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Internet Appendices

A. Account Registration Types

Table A: Registration Type Profile

Reg Type # Alerts Alert Share # Issues Issue Share Issue Rate

Corporate 44,159 21.08 % 936 38.13 % 2.12 %
Education 3,169 1.51 % 10 0.41 % 0.32 %
Estate-like 670 0.32 % 0 0.00 % 0.00 %
IRA 19,745 9.43 % 14 0.57 % 0.07 %
People 119,717 57.15 % 1,366 55.64 % 1.14 %
Trust 22,024 10.51 % 129 5.25 % 0.59 %

Notes: The table reports the cross-section of Alerts and Issues over the different reg types that comprise
the accounts which trigger the alerts. The categories of Corporate and People together compromise 78.23%
of the alerts and 93.77% of the Issue cases in total and so, for the purposes of our study, we only consider
these two reg types.

B. Hofstede Indices
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Table B1: Hofstede Indices Models

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.70 0.43 0.695 0.87 0.53 0.813 0.58 0.40 0.651
Under-sampling 0.70 0.44 0.711 0.87 0.49 0.818 0.67 0.51 0.659
Hybrid-sampling 0.70 0.42 0.711 0.87 0.50 0.818 0.65 0.48 0.663
Synthetic-sampling 0.78 0.53 0.711 0.81 0.44 0.812 0.71 0.54 0.658

RF No Balancing 1.00 1.00 0.573 1.00 1.00 0.664 1.00 1.00 0.514
Under-sampling 0.71 0.42 0.747 0.86 0.42 0.848 0.75 0.49 0.718
Hybrid-sampling 0.71 0.41 0.730 0.82 0.32 0.848 0.78 0.49 0.707
Synthetic-sampling 1.00 1.00 0.713 1.00 1.00 0.835 1.00 1.00 0.654

SVM No Balancing 0.67 0.53 0.545 0.51 0.45 0.532 0.72 0.53 0.625
Under-sampling 0.74 0.56 0.670 0.92 0.52 0.830 0.62 0.41 0.648
Hybrid-sampling 0.73 0.54 0.686 0.89 0.56 0.829 0.79 0.59 0.641
Synthetic-sampling 0.60 0.59 0.531 0.62 0.41 0.719 0.66 0.58 0.586

GBM No Balancing 0.82 0.52 0.765 0.89 0.57 0.867 0.82 0.56 0.727
Under-sampling 0.81 0.52 0.767 0.84 0.41 0.861 0.82 0.56 0.726
Hybrid-sampling 0.83 0.54 0.771 0.84 0.41 0.866 0.82 0.55 0.739
Synthetic-sampling 0.68 0.41 0.716 0.85 0.57 0.811 0.71 0.51 0.662

Notes: The table reports the performance of our Hofstede Indices model with Cultural Distance using logistic regression (LR),
random forest (RF), support vector machine (SVM) and gradient boosting (GBM) in combination with no balancing, under-
sampling, hybrid-sampling and synthetic-sampling, respectively. The performance is measured using True Positive Rate (TP
Rate), False Positive Rate (FP Rate) and Area under the ROC Curve (AUC). The data sample comprises of 81,858 alerts (32,482
corporate-related and 49,376 people-related) with 1,273 Issue cases (537 corporate-related and 736 people-related). The model
has 8 predictors.
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Table B2: Predictor Importance for Hofstede Indices Model with Hybrid-sampling

Combined Corporate People

Predictor LR RF GBM Ave. LR RF GBM Ave. LR RF GBM Ave.

IDVS *** 1 1 1 *** 1 1 1 *** 1 2 1
MASS *** 7 5 5 7 6 6 *** 2 3 3
PDIS . 2 3 3 *** 2 3 3 *** 4 5 5
UAIS *** 4 4 4 *** 5 5 5 *** 5 4 4
IDVR *** 3 2 2 3 4 4 * 6 8 7
MASR *** 5 6 6 *** 6 8 8 *** 3 1 2
PDIR . 6 7 7 *** 4 2 2 ** 7 7 8
UAIR * 8 8 8 *** 8 7 7 *** 8 6 6

Notes: The table reports the importance of the predictors for the Hybrid-sampled Hofstede Indices model applied to the full
sample (combined) and its partitions (Corporate & People accounts). Estimates of importance are obtained from the logistic
regression (LR), random forest (RF), gradient boosted model (GBM) algorithms. A weighted average of RF and GBM (Ave.) is
included. For LR, ***,**,* and · denote 0.1%, 1%, 5% and 10% levels of significance. RF and GBM are both tree-based algorithms
and so their estimates are based on the mean decrease in the Gini index of each node across all trees. The Gini index measures
node impurity. The data sample comprises of 81,858 alerts (32,482 corporate-related and 49,376 people-related) with 1,273 Issue
cases (537 corporate-related and 736 people-related). The model has 8 predictors.
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Table B3: Cross-validation for Hofstede Indices Model with Hybrid-sampling.

Panel A: 5-Fold Cross-validation on AUC scores

Combined Corporate People

Round LR RF SVM GBM LR RF SVM GBM LR RF SVM GBM

1 0.701 0.745 0.736 0.772 0.855 0.877 0.848 0.873 0.647 0.691 0.629 0.717
2 0.734 0.761 0.721 0.796 0.814 0.859 0.794 0.876 0.648 0.664 0.618 0.714
3 0.710 0.741 0.728 0.778 0.805 0.837 0.801 0.863 0.644 0.684 0.653 0.685
4 0.717 0.744 0.695 0.773 0.787 0.842 0.821 0.884 0.640 0.731 0.680 0.756
5 0.692 0.731 0.700 0.768 0.774 0.825 0.780 0.842 0.694 0.703 0.680 0.721

µ 0.711 0.744 0.716 0.777 0.807 0.848 0.809 0.868 0.655 0.695 0.652 0.719
σ 0.016 0.011 0.018 0.011 0.031 0.020 0.026 0.016 0.022 0.025 0.029 0.025

Panel B: 10-Fold Cross-validation on AUC scores

Combined Corporate People

Round LR RF SVM GBM LR RF SVM GBM LR RF SVM GBM

1 0.757 0.764 0.689 0.785 0.760 0.810 0.751 0.851 0.658 0.668 0.618 0.699
2 0.745 0.771 0.714 0.822 0.795 0.836 0.799 0.875 0.716 0.690 0.634 0.704
3 0.706 0.735 0.703 0.766 0.772 0.789 0.781 0.825 0.618 0.691 0.612 0.710
4 0.682 0.745 0.729 0.774 0.773 0.826 0.795 0.884 0.664 0.735 0.650 0.740
5 0.762 0.775 0.736 0.817 0.706 0.770 0.756 0.821 0.654 0.687 0.626 0.720
6 0.690 0.723 0.701 0.733 0.891 0.903 0.867 0.931 0.653 0.734 0.655 0.747
7 0.729 0.764 0.716 0.779 0.865 0.907 0.869 0.898 0.665 0.777 0.636 0.767
8 0.697 0.728 0.694 0.772 0.828 0.889 0.872 0.896 0.644 0.670 0.639 0.688
9 0.703 0.757 0.720 0.781 0.814 0.864 0.844 0.898 0.640 0.735 0.667 0.723
10 0.648 0.684 0.655 0.744 0.850 0.903 0.840 0.900 0.616 0.683 0.638 0.703

µ 0.712 0.745 0.706 0.777 0.805 0.850 0.817 0.878 0.653 0.707 0.637 0.720
σ 0.036 0.028 0.023 0.028 0.055 0.051 0.047 0.035 0.028 0.036 0.017 0.025

Notes: The table reports the AUCs for 5-fold and 10-fold cross-validation for the hybrid-sampled Hofstede Indices model with logistic regression (LR),
random forest (RF), support vector machine (SVM) and gradient boosting (GBM). The data sample comprises of 81,858 alerts (32,482 corporate-related
and 49,376 people-related) with 1,273 Issue cases (537 corporate-related and 736 people-related). The model has 8 predictors.
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C. Schwarz Indices
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Table C1: Country, Account & Transaction-level Models (Schwartz Indices)

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.72 0.41 0.736 0.78 0.40 0.821 0.80 0.49 0.753
Under-sampling 0.76 0.47 0.746 0.86 0.40 0.827 0.78 0.46 0.754
Hybrid-sampling 0.77 0.45 0.750 0.96 0.48 0.856 0.80 0.50 0.756
Synthetic-sampling 0.81 0.54 0.736 0.91 0.50 0.855 0.82 0.57 0.733

RF No Balancing 1.00 1.00 0.888 1.00 1.00 0.923 1.00 1.00 0.873
Under-sampling 0.90 0.49 0.872 0.96 0.56 0.910 0.93 0.60 0.870
Hybrid-sampling 0.94 0.54 0.899 0.95 0.43 0.928 0.93 0.47 0.892
Synthetic-sampling 0.83 0.46 0.748 0.89 0.58 0.831 0.76 0.45 0.747

SVM No Balancing 0.84 0.50 0.813 0.91 0.40 0.908 0.75 0.43 0.766
Under-sampling 0.84 0.43 0.785 0.90 0.40 0.842 0.85 0.58 0.787
Hybrid-sampling 0.83 0.43 0.827 0.89 0.53 0.869 0.81 0.56 0.760
Synthetic-sampling 0.86 0.57 0.756 0.94 0.45 0.897 0.72 0.48 0.709

GBM No Balancing 0.94 0.57 0.842 0.90 0.59 0.867 0.89 0.570 0.818
Under-sampling 0.85 0.40 0.839 0.92 0.44 0.876 0.93 0.54 0.822
Hybrid-sampling 0.96 0.57 0.860 0.96 0.52 0.905 0.93 0.60 0.841
Synthetic-sampling 0.69 0.40 0.704 0.90 0.43 0.815 0.70 0.41 0.715

Notes: The table reports the performance of our Country, Account & Transaction-level model using logistic regression (LR), random forest
(RF), support vector machine (SVM) and gradient boosting (GBM) in combination with no balancing, under-sampling, hybrid-sampling
and synthetic-sampling, respectively. The model uses the Schwarz Indices for the Country-level predictors. The performance is measured
using True Positive Rate (TP Rate), False Positive Rate (FP Rate) and Area under the ROC Curve (AUC). The data sample comprises of
53,956 alerts (22,125 corporate-related and 31,441 people-related) with 731 Issue cases (265 corporate-related and 563 people-related). The
model has 22 predictors.

50



Table C2: Absolute Country-level Predictor Importance for Country, Account & Transaction-level Model with Hybrid-sampling (Schwartz Indices)

Combined Corporate People

Predictor LR RF GBM Ave. LR RF GBM Ave. LR RF GBM Ave.

CPIS *** 1 1 1 *** 2 3 3 *** 2 2 2
FSIS *** 2 2 2 *** 4 2 2 *** 1 1 1
EBDS *** 4 4 4 *** 5 4 5 *** 4 5 4
EGAS *** 7 7 7 *** 7 5 6 ** 5 6 5
HIES *** 5 5 5 *** 8 10 8 *** 3 3 3
CPIR *** 3 3 3 *** 3 7 4 *** 6 4 6
FSIR *** 8 8 8 * 6 6 7 *** 9 10 10
EBDR *** 6 6 6 1 1 1 * 10 7 7
EGAR *** 10 10 10 10 8 10 7 9 9
HIER 9 9 9 *** 9 9 9 8 8 8

Notes: The table reports the importance of the Country-level predictors by absolute ranking for the Hybrid-sampled Country,
Account & Transaction-level model applied to the full sample (combined) and its partitions (Corporate & People accounts). The
model uses the Schwarz Indices for the Country-level predictors. Estimates of importance are obtained from the logistic regression
(LR), random forest (RF), gradient boosted model (GBM) algorithms. A weighted average of RF and GBM (Ave.) is included.
For LR, ***,**,* and · denote 0.1%, 1%, 5% and 10% levels of significance. RF and GBM are both tree-based algorithms and so
their estimates are based on the mean decrease in the Gini index of each node across all trees. The Gini index measures node
impurity. The data sample comprises of 53,956 alerts (22,125 corporate-related and 31,441 people-related) with 731 Issue cases
(265 corporate-related and 463 people-related). The model has 22 predictors.
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Table C3: Cross-validation for Country, Account & Transaction-level Model with Hybrid-sampling (Schwartz Indices)

Panel A: 5-Fold Cross-validation on AUC scores

Combined Corporate People

Round LR RF SVM GBM LR RF SVM GBM LR RF SVM GBM

1 0.745 0.915 0.857 0.882 0.863 0.951 0.902 0.927 0.753 0.875 0.818 0.820
2 0.768 0.903 0.850 0.855 0.825 0.959 0.890 0.941 0.743 0.889 0.829 0.816
3 0.782 0.931 0.860 0.866 0.845 0.952 0.915 0.925 0.784 0.935 0.869 0.900
4 0.750 0.888 0.836 0.846 0.808 0.946 0.903 0.924 0.722 0.863 0.735 0.820
5 0.758 0.934 0.895 0.875 0.855 0.940 0.898 0.938 0.791 0.925 0.806 0.873

µ 0.761 0.914 0.860 0.865 0.839 0.950 0.902 0.931 0.759 0.897 0.811 0.846
σ 0.015 0.019 0.022 0.015 0.022 0.007 0.009 0.008 0.029 0.031 0.049 0.038

Panel B: 10-Fold Cross-validation on AUC scores

Combined Corporate People

Round LR RF SVM GBM LR RF SVM GBM LR RF SVM GBM

1 0.787 0.921 0.855 0.895 0.814 0.928 0.928 0.929 0.731 0.888 0.821 0.851
2 0.709 0.922 0.827 0.822 0.848 0.933 0.807 0.915 0.758 0.940 0.911 0.884
3 0.753 0.902 0.856 0.870 0.898 0.974 0.942 0.966 0.808 0.896 0.778 0.853
4 0.807 0.922 0.888 0.866 0.869 0.992 0.954 0.974 0.750 0.872 0.798 0.843
5 0.785 0.935 0.895 0.895 0.800 0.983 0.959 0.955 0.804 0.940 0.905 0.903
6 0.768 0.957 0.901 0.914 0.850 0.978 0.960 0.964 0.788 0.915 0.846 0.851
7 0.764 0.928 0.844 0.858 0.885 0.917 0.919 0.955 0.771 0.944 0.841 0.879
8 0.735 0.916 0.866 0.847 0.862 0.974 0.905 0.945 0.764 0.905 0.847 0.848
9 0.789 0.962 0.908 0.889 0.780 0.930 0.819 0.877 0.742 0.893 0.801 0.839
10 0.740 0.901 0.837 0.860 0.774 0.897 0.844 0.893 0.661 0.873 0.864 0.781

µ 0.764 0.927 0.868 0.872 0.838 0.951 0.904 0.937 0.758 0.907 0.841 0.853
σ 0.030 0.020 0.029 0.027 0.044 0.033 0.059 0.033 0.042 0.027 0.044 0.033

Notes: The table reports the AUCs for 5-fold and 10-fold cross-validation for the hybrid-sampled Country-, Account- & Transaction-level model with
logistic regression (LR), random forest (RF), support vector machine (SVM) and gradient boosting (GBM). The model uses the Schwarz Indices for
the Country-level predictors. The data sample comprises of 53,956 alerts (22,125 corporate-related and 31,441 people-related) with 731 Issue cases (265
corporate-related and 463 people-related). The model has 22 predictors.
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D. Miscellaneous
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Table D1: Country & Account-level models

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.79 0.50 0.728 0.83 0.37 0.824 0.80 0.60 0.681
Under-sampling 0.89 0.67 0.735 0.91 0.51 0.812 0.91 0.77 0.688
Hybrid-sampling 0.83 0.56 0.739 0.79 0.27 0.829 0.85 0.67 0.677
Synthetic-sampling 0.88 0.64 0.727 0.92 0.53 0.814 0.84 0.65 0.671

RF No Balancing 0.81 0.30 0.855 0.89 0.22 0.915 0.80 0.32 0.826
Under-sampling 0.89 0.47 0.837 0.88 0.20 0.929 0.91 0.62 0.793
Hybrid-sampling 0.86 0.36 0.862 0.90 0.23 0.942 0.81 0.38 0.812
Synthetic-sampling 0.88 0.66 0.723 0.83 0.32 0.863 0.82 0.67 0.643

SVM No Balancing 0.86 0.57 0.742 0.91 0.51 0.862 0.81 0.49 0.756
Under-sampling 0.83 0.53 0.760 0.79 0.21 0.865 0.89 0.74 0.696
Hybrid-sampling 0.90 0.53 0.807 0.86 0.27 0.904 0.80 0.51 0.732
Synthetic-sampling 0.84 0.74 0.625 0.84 0.37 0.825 0.85 0.76 0.614

GBM No Balancing 0.81 0.38 0.805 0.79 0.15 0.908 0.91 0.67 0.749
Under-sampling 0.84 0.43 0.818 0.89 0.24 0.911 0.85 0.57 0.752
Hybrid-sampling 0.83 0.36 0.830 0.85 0.17 0.926 0.91 0.67 0.760
Synthetic-sampling 0.92 0.72 0.735 0.86 0.36 0.832 0.86 0.69 0.679

Notes: The table reports the performance of our Country & Account-level model using logistic regression (LR), random forest
(RF), support vector machine (SVM) and gradient boosting (GBM) in combination with no balancing, under-sampling, hybrid-
sampling and synthetic-sampling, respectively. The performance is measured using True Positive Rate (TP Rate), False Positive
Rate (FP Rate) and Area under the ROC Curve (AUC). The data sample comprises of 74,246 alerts (30,292 corporate-related
and 43,954 people-related) with 1,172 Issue cases (524 corporate-related and 648 people-related). The model has 16 predictors.
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Table D2: Account-level Models

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.645 0.661 0.620
Under-sampling 0.646 0.660 0.620
Hybrid-sampling 0.645 0.659 0.622
Synthetic-sampling 0.645 0.659 0.622

RF No Balancing 0.775 0.832 0.782
Under-sampling 0.724 0.805 0.791
Hybrid-sampling 0.738 0.822 0.786
Synthetic-sampling 0.646 0.652 0.542

SVM No Balancing 0.621 0.681 0.665
Under-sampling 0.694 0.740 0.679
Hybrid-sampling 0.700 0.754 0.719
Synthetic-sampling 0.644 0.652 0.589

GBM No Balancing 0.759 0.856 0.711
Under-sampling 0.745 0.829 0.699
Hybrid-sampling 0.752 0.859 0.720
Synthetic-sampling 0.655 0.682 0.611

Notes: The table reports the performance of our Account-level model using logistic regression (LR), random forest (RF), support
vector machine (SVM) and gradient boosting (GBM) in combination with no balancing, under-sampling, hybrid-sampling and
synthetic-sampling, respectively. The performance is measured using True Positive Rate (TP Rate), False Positive Rate (FP
Rate) and Area under the ROC Curve (AUC). The data sample comprises of 151,985 alerts (42,193 corporate-related and 109,792
people-related) with 2,179 Issue cases (914 corporate-related and 1,265 people-related). The model has 4 predictors.
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Table D3: Transaction-level Models

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.540 0.654 0.671
Under-sampling 0.532 0.645 0.676
Hybrid-sampling 0.546 0.635 0.676
Synthetic-sampling 0.556 0.640 0.675

RF No Balancing 0.638 0.630 0.650
Under-sampling 0.754 0.784 0.747
Hybrid-sampling 0.757 0.779 0.733
Synthetic-sampling 0.573 0.622 0.600

SVM No Balancing 0.644 0.673 0.562
Under-sampling 0.682 0.709 0.683
Hybrid-sampling 0.706 0.739 0.785
Synthetic-sampling 0.548 0.546 0.626

GBM No Balancing 0.729 0.768 0.719
Under-sampling 0.723 0.763 0.732
Hybrid-sampling 0.740 0.775 0.733
Synthetic-sampling 0.535 0.596 0.611

Notes: The table reports the performance of our Transaction-level model using logistic regression (LR), random forest (RF),
support vector machine (SVM) and gradient boosting (GBM) in combination with no balancing, under-sampling, hybrid-sampling
and synthetic-sampling, respectively. The performance is measured using True Positive Rate (TP Rate), False Positive Rate (FP
Rate) and Area under the ROC Curve (AUC). The data sample comprises of 153,913 alerts (42,271 corporate-related and 111,642
people-related) with 2,206 Issue cases (914 corporate-related and 1,292 people-related). The model has 8 predictors.
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Table D4: Account & Transaction-level Models

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.657 0.700 0.674
Under-sampling 0.651 0.696 0.687
Hybrid-sampling 0.656 0.699 0.692
Synthetic-sampling 0.655 0.691 0.675

RF No Balancing 0.846 0.900 0.821
Under-sampling 0.847 0.895 0.808
Hybrid-sampling 0.851 0.908 0.815
Synthetic-sampling 0.654 0.638 0.625

SVM No Balancing 0.677 0.827 0.698
Under-sampling 0.757 0.831 0.719
Hybrid-sampling 0.795 0.852 0.732
Synthetic-sampling 0.653 0.672 0.613

GBM No Balancing 0.799 0.854 0.775
Under-sampling 0.795 0.852 0.775
Hybrid-sampling 0.805 0.861 0.791
Synthetic-sampling 0.644 0.564 0.626

Notes: The table reports the performance of our Account & Transaction-level model using logistic regression (LR), random forest (RF),
support vector machine (SVM) and gradient boosting (GBM) in combination with no balancing, under-sampling, hybrid-sampling and
synthetic-sampling, respectively. The performance is measured using True Positive Rate (TP Rate), False Positive Rate (FP Rate) and Area
under the ROC Curve (AUC). The data sample comprises of 151,985 alerts (42,193 corporate-related and 109,792 people-related) with 1,172
Issue cases (524 corporate-related and 648 people-related). The model has 12 predictors.
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Table D5: Country, Account, Transaction-level & Cultural Distance Models

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.750 0.861 0.742
Under-sampling 0.762 0.867 0.755
Hybrid-sampling 0.764 0.872 0.753
Synthetic-sampling 0.742 0.850 0.725

RF No Balancing 0.881 0.939 0.861
Under-sampling 0.875 0.935 0.833
Hybrid-sampling 0.888 0.938 0.858
Synthetic-sampling 0.774 0.876 0.669

SVM No Balancing 0.822 0.866 0.744
Under-sampling 0.793 0.887 0.750
Hybrid-sampling 0.829 0.881 0.740
Synthetic-sampling 0.738 0.865 0.653

GBM No Balancing 0.838 0.904 0.804
Under-sampling 0.853 0.922 0.806
Hybrid-sampling 0.859 0.936 0.830
Synthetic-sampling 0.703 0.842 0.676

Notes: The table reports the performance of our Country, Account, Transaction-level model with Cultural Distance using
logistic regression (LR), random forest (RF), support vector machine (SVM) and gradient boosting (GBM) in combination with
no balancing, under-sampling, hybrid-sampling and synthetic-sampling, respectively. The performance is measured using True
Positive Rate (TP Rate), False Positive Rate (FP Rate) and Area under the ROC Curve (AUC). The data sample comprises of
74,246 alerts (30,292 corporate-related and 43,954 people-related) with 1,172 Issue cases (524 corporate-related and 648 people-
related). The model has 25 predictors.
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Table D6: Cultural Distance, Account & Transaction-level Models

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.762 0.858 0.728
Under-sampling 0.766 0.867 0.727
Hybrid-sampling 0.769 0.860 0.730
Synthetic-sampling 0.755 0.844 0.717

RF No Balancing 0.901 0.957 0.849
Under-sampling 0.891 0.952 0.837
Hybrid-sampling 0.903 0.961 0.851
Synthetic-sampling 0.803 0.748 0.696

SVM No Balancing 0.809 0.921 0.731
Under-sampling 0.803 0.904 0.750
Hybrid-sampling 0.827 0.928 0.728
Synthetic-sampling 0.765 0.919 0.700

GBM No Balancing 0.842 0.910 0.798
Under-sampling 0.853 0.927 0.802
Hybrid-sampling 0.864 0.939 0.817
Synthetic-sampling 0.759 0.834 0.689

Notes: The table reports the performance of our Cultural Distance, Account & Transaction-level model using logistic regression (LR),
random forest (RF), support vector machine (SVM) and gradient boosting (GBM) in combination with no balancing, under-sampling,
hybrid-sampling and synthetic-sampling, respectively. The performance is measured using True Positive Rate (TP Rate), False Positive
Rate (FP Rate) and Area under the ROC Curve (AUC). The data sample comprises of 74,246 alerts (30,292 corporate-related and 43,954
people-related) with 1,172 Issue cases (524 corporate-related and 648 people-related). The model has 17 predictors.
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Table D7: Absolute Country-level Predictor Importance for Country & Account-level Model with Hybrid-sampling

Combined Corporate People

Predictor LR RF GBM Ave. LR RF GBM Ave. LR RF GBM Ave.

CPIS 4 5 5 *** 8 8 8 *** 9 9 9
FSIS 7 7 7 *** 10 10 10 *** 5 6 5
IDVS *** 3 1 2 *** 3 3 3 *** 4 3 4
MASS *** 12 9 10 * 11 15 13 *** 9 10 10
PDIS *** 5 10 8 *** 6 7 7 *** 10 14 11
UAIS *** 9 8 9 *** 7 6 6 *** 6 8 8
CPIR *** 8 6 6 *** 4 2 4 *** 11 5 6
FSIR ** 15 12 14 *** 13 13 12 16 13 16
IDVR 6 4 4 *** 5 5 5 *** 13 15 14
MASR *** 11 14 13 12 9 11 * 12 16 15
PDIR *** 13 11 11 9 14 9 *** 15 11 12
UAIR *** 14 15 15 *** 14 12 14 *** 14 12 13

Notes: The table reports the importance of the Country-level predictors by absolute ranking for the Hybrid-sampled Country
& Account-level model applied to the full sample (combined) and its partitions (Corporate & People accounts). Estimates of
importance are obtained from the logistic regression (LR), random forest (RF), gradient boosted model (GBM) algorithms. A
weighted average of RF and GBM (Ave.) is included. For LR, ***,**,* and · denote 0.1%, 1%, 5% and 10% levels of significance.
RF and GBM are both tree-based algorithms and so their estimates are based on the mean decrease in the Gini index of each node
across all trees. The Gini index measures node impurity. The data sample comprises of 151,985 alerts (42,193 corporate-related
and 109,792 people-related) with 1,172 Issue cases (524 corporate-related and 648 people-related). The model has 16 predictors.
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Table D8: Absolute Country-level Predictor Importance for Country, Account & Transaction-level Model with Cultural Distance and Hybrid-sampling

Combined Corporate People

Predictor LR RF GBM Ave. LR RF GBM Ave. LR RF GBM Ave.

CD *** 11 7 11 *** 11 2 2 *** 13 13 13
CPIS *** 8 6 5 *** 16 10 12 *** 12 6 9
FSIS *** 14 10 12 *** 15 12 13 *** 14 11 14
IDVS *** 5 1 1 *** 5 14 10 * 9 10 11
MASS *** 16 14 16 *** 17 20 19 *** 19 19 18
PDIS *** 9 15 14 12 19 16 16 17 17
UAIS *** 19 17 18 *** 13 17 15 *** 17 15 15
CPIR *** 17 5 10 *** 6 11 9 *** 15 2 5
FSIR * 23 19 23 *** 14 21 17 * 24 23 25
IDVR 13 4 6 *** 7 1 1 21 25 22
MASR *** 21 22 21 *** 22 15 20 * 20 24 21
PDIR *** 20 21 20 * 10 16 11 *** 25 20 25
UAIR *** 24 24 24 *** 20 23 22 *** 23 22 24

Notes: The table reports the importance of the Country, Account and Transaction-level predictors with Cultural Distance
by absolute ranking for the Hybrid-sampled Cultural Distance, Account & Transaction-level model applied to the full sample
(combined) and its partitions (Corporate & People accounts). Estimates of importance are obtained from the logistic regression
(LR), random forest (RF), gradient boosted model (GBM) algorithms. A weighted average of RF and GBM (Ave.) is included.
For LR, ***,**,* and · denote 0.1%, 1%, 5% and 10% levels of significance. RF and GBM are both tree-based algorithms and so
their estimates are based on the mean decrease in the Gini index of each node across all trees. The Gini index measures node
impurity. The data sample comprises of 74,246 alerts (30,292 corporate-related and 43,954 people-related) with 1,172 Issue cases
(524 corporate-related and 648 people-related). the model has 25 predictors.
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Table D9: Absolute Country-level Predictor Importance for Cultural Distance, Account & Transaction-level Model with Hybrid-sampling

Combined Corporate People

Predictor LR RF GBM Ave. LR RF GBM Ave. LR RF GBM Ave.

CD *** 6 2 4 *** 3 2 2 *** 9 11 10
CPIS * 4 6 6 · 4 6 5 *** 7 6 7
FSIS *** 9 7 7 *** 11 11 11 *** 8 5 6
CPIR *** 7 1 1 *** 1 1 1 *** 11 2 5
FSIR *** 11 16 13 *** 5 13 10 ** 17 15 16

Notes: The table reports the importance of the Country-level predictors and Cultural Distance by absolute ranking fo r the
Hybrid-sampled Cultural Distance, Account & Transaction-level model applied to the full sample (combined) and its partitions
(Corporate & People accounts). Estimates of importance are obtained from the logistic regression (LR), random forest (RF),
gradient boosted model (GBM) algorithms. A weighted average of RF and GBM (Ave.) is included. For LR, ***,**,* and ·
denote 0.1%, 1%, 5% and 10% levels of significance. RF and GBM are both tree-based algorithms and so their estimates are based
on the mean decrease in the Gini index of each node across all trees. The Gini index measures node impurity. The data sample
comprises of 74,246 alerts (30,292 corporate-related and 43,954 people-related) with 1,172 Issue cases (524 corporate-related and
648 people-related). the model has 17 predictors.
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Table D10: Relative Country-level Predictor Importance for Country & Account-level Model with Hybrid-sampling

Combined Corporate People

Predictor LR RF GBM Ave. LR RF GBM Ave. LR RF GBM Ave.

CPIS 2 3 3 *** 6 6 6 *** 4 5 5
FSIS 5 5 5 *** 8 8 8 *** 2 3 2
IDVS *** 1 1 1 *** 1 2 1 *** 1 1 1
MASS *** 9 7 8 * 9 12 11 *** 5 6 6
PDIS *** 3 8 6 *** 4 5 5 *** 6 10 7
UAIS *** 7 6 7 *** 5 4 4 *** 3 4 4
CPIR *** 6 4 4 *** 2 1 2 *** 7 2 3
FSIR ** 12 10 11 *** 11 10 10 12 9 12
IDVR 4 2 2 *** 3 3 3 *** 9 11 10
MASR *** 8 11 10 10 7 9 * 8 12 11
PDIR *** 10 9 9 7 11 7 *** 11 7 8
UAIR *** 11 12 12 *** 12 9 12 *** 10 8 9

Notes: The table reports the importance of the Country-level predictors by relative ranking for the Hybrid-sampled Country
& Account-level model applied to the full sample (combined) and its partitions (Corporate & People accounts). Estimates of
importance are obtained from the logistic regression (LR), random forest (RF), gradient boosted model (GBM) algorithms. A
weighted average of RF and GBM (Ave.) is included. For LR, ***,**,* and · denote 0.1%, 1%, 5% and 10% levels of significance.
RF and GBM are both tree-based algorithms and so their estimates are based on the mean decrease in the Gini index of each
node across all trees. The Gini index measures node impurity.
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Table D11: Relative Country-level Predictor Importance for Country, Account & Transaction-level Model with Hybrid-sampling

Combined Corporate People

Predictor LR RF GBM Ave. LR RF GBM Ave. LR RF GBM Ave.

CPIS 5 9 8 *** 6 9 6 *** 4 4 4
FSIS *** 2 3 3 8 5 8 *** 2 3 3
IDVS 1 1 1 *** 1 1 1 *** 1 1 1
MASS *** 7 5 6 *** 9 10 9 *** 3 7 6
PDIS *** 4 6 5 *** 4 4 4 · 6 8 7
UAIS *** 6 7 7 *** 3 3 3 · 5 5 5
CPIR *** 8 4 4 *** 5 7 5 *** 7 2 2
FSIR *** 10 8 10 10 11 11 ** 11 10 12
IDVR *** 3 2 2 2 2 2 *** 9 12 10
MASR * 9 11 9 11 8 10 8 11 9
PDIR *** 11 10 11 7 6 7 *** 12 9 11
UAIR *** 12 12 12 *** 12 12 12 10 6 8

Notes: The table reports the importance of the Country-level predictors by relative ranking for the Hybrid-sampled Country,
Account & Transaction-level model applied to the full sample (combined) and its partitions (Corporate & People accounts).
Estimates of importance are obtained from the logistic regression (LR), random forest (RF), gradient boosted model (GBM)
algorithms. A weighted average of RF and GBM (Ave.) is included. For LR, ***,**,* and · denote 0.1%, 1%, 5% and 10% levels
of significance. RF and GBM are both tree-based algorithms and so their estimates are based on the mean decrease in the Gini
index of each node across all trees. The Gini index measures node impurity. The data sample comprises of 74,246 alerts (30,292
corporate-related and 43,954 people-related) with 1,172 Issue cases (524 corporate-related and 648 people-related).
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Table D12: Cultural Distance Logistic Regression Coefficients

Model 1 Model 2

Model Balancing Coefficient Sig. Coefficient Sig.

Combined No Balancing 0.015 *** 0.014 ***
Under-sampling 0.016 *** 0.023 ***
Hybrid-sampling 0.014 *** 0.020 ***
Synthetic-sampling 0.008 *** 0.006 ***

Corporate No Balancing 0.021 *** 0.020 ***
Under-sampling 0.016 *** 0.032 ***
Hybrid-sampling 0.018 *** 0.027 ***
Synthetic-sampling 0.010 *** 0.009 ***

People No Balancing 0.008 *** 0.005 ·
Under-sampling 0.010 *** 0.023 **
Hybrid-sampling 0.008 *** 0.010 ***
Synthetic-sampling 0.005 *** 0.004 ***

Notes: The table reports the values of the coefficients in the Logistic Regressions for the Cultural Distance, Account &
Transaction-level models (Model 1) and the Cultural Distance, Country, Account & Transaction-level models (Model 2). The
data sample comprises of 74,246 alerts (30,292 corporate-related and 43,954 people-related) with 1,172 Issue cases (524 corporate-
related and 648 people-related). ***,**,* and · denote 0.1%, 1%, 5% and 10% levels of significance. Model 1 has 18 predictors
and Model 2 has 25 predictors.
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Table D13: Cultural Distance Logistic Regression Coefficients

Model 1 Model 2

Model Balancing Coefficient Sig. Coefficient Sig.

Combined No Balancing 0.015 *** 0.014 ***
Under-sampling 0.016 *** 0.023 ***
Hybrid-sampling 0.014 *** 0.020 ***
Synthetic-sampling 0.008 *** 0.006 ***

Corporate No Balancing 0.021 *** 0.020 ***
Under-sampling 0.016 *** 0.032 ***
Hybrid-sampling 0.018 *** 0.027 ***
Synthetic-sampling 0.010 *** 0.009 ***

People No Balancing 0.008 *** 0.005 ·
Under-sampling 0.010 *** 0.023 **
Hybrid-sampling 0.008 *** 0.010 ***
Synthetic-sampling 0.005 *** 0.004 ***

Notes: The table reports the values of the coefficients in the Logistic Regressions for the Cultural Distance, Account &
Transaction-level models (Model 1) and the Cultural Distance, Country, Account & Transaction-level models (Model 2). The
data sample comprises of 74,246 alerts (30,292 corporate-related and 43,954 people-related) with 1,172 Issue cases (524 corporate-
related and 648 people-related). ***,**,* and · denote 0.1%, 1%, 5% and 10% levels of significance. Model 1 has 18 predictors
and Model 2 has 25 predictors.
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Table D14: Account & Transaction-level Models with CPI &FSI

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.705 0.793 0.706
Under-sampling 0.709 0.797 0.728
Hybrid-sampling 0.708 0.801 0.732
Synthetic-sampling 0.702 0.784 0.707

RF No Balancing 0.861 0.959 0.925
Under-sampling 0.857 0.951 0.903
Hybrid-sampling 0.861 0.967 0.912
Synthetic-sampling 0.702 0.761 0.658

SVM No Balancing 0.697 0.863 0.678
Under-sampling 0.779 0.848 0.774
Hybrid-sampling 0.801 0.893 0.821
Synthetic-sampling 0.678 0.771 0.631

GBM No Balancing 0.806 0.863 0.803
Under-sampling 0.820 0.864 0.828
Hybrid-sampling 0.822 0.879 0.823
Synthetic-sampling 0.694 0.766 0.639

Notes: The table reports the performance of our Account & Transaction-level model with CPI & FSI using logistic regression
(LR), random forest (RF), support vector machine (SVM) and gradient boosting (GBM) in combination with no balancing,
under-sampling, hybrid-sampling and synthetic-sampling, respectively. The performance is measured using True Positive Rate
(TP Rate), False Positive Rate (FP Rate) and Area under the ROC Curve (AUC). The data sample comprises of 146,084 alerts
(37,562 corporate-related and 107,024 people-related) with 2,081 Issue cases (832 corporate-related and 1,229 people-related). The
model has 14 predictors.
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Table D15: Schwarz Indices Models

Combined Corporate People

Model Balancing TPR FPR AUC TPR FPR AUC TPR FPR AUC

LR No Balancing 0.638 0.722 0.653
Under-sampling 0.631 0.750 0.645
Hybrid-sampling 0.627 0.749 0.653
Synthetic-sampling 0.633 0.731 0.651

RF No Balancing 0.519 0.518 0.531
Under-sampling 0.735 0.815 0.712
Hybrid-sampling 0.721 0.800 0.703
Synthetic-sampling 0.680 0.745 0.674

SVM No Balancing 0.557 0.528 0.576
Under-sampling 0.710 0.785 0.711
Hybrid-sampling 0.667 0.770 0.651
Synthetic-sampling 0.567 0.663 0.549

GBM No Balancing 0.744 0.805 0.741
Under-sampling 0.745 0.818 0.734
Hybrid-sampling 0.755 0.823 0.752
Synthetic-sampling 0.669 0.745 0.669

Notes: The table reports the performance of our Schwarz Indices model with Cultural Distance using logistic regression (LR),
random forest (RF), support vector machine (SVM) and gradient boosting (GBM) in combination with no balancing, under-
sampling, hybrid-sampling and synthetic-sampling, respectively. The performance is measured using True Positive Rate (TP
Rate), False Positive Rate (FP Rate) and Area under the ROC Curve (AUC). The data sample comprises of 58,447 alerts (23,449
corporate-related and 34,998 people-related) with 783 Issue cases (270 corporate-related and 513 people-related). The model has
6 predictors.
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Table D16: Predictor Importance for Schwarz Indices Model with Hybrid-sampling

Combined Corporate People

Predictor LR RF GBM Ave. LR RF GBM Ave. LR RF GBM Ave.

EBDS *** 2 2 2 *** 2 2 2 *** 2 2 2
EGAS 5 5 5 *** 6 4 4 ** 3 3 3
HIES *** 1 3 3 *** 4 3 3 *** 1 1 1
EBDR *** 3 1 1 *** 1 1 1 *** 6 6 6
EGAR . 6 6 6 *** 5 6 6 *** 5 5 5
HIER *** 4 4 4 *** 3 5 5 *** 4 4 4

Notes: The table reports the importance of the predictors for the Hybrid-sampled Schwarz Indices model applied to the full
sample (combined) and its partitions (Corporate & People accounts). Estimates of importance are obtained from the logistic
regression (LR), random forest (RF), gradient boosted model (GBM) algorithms. A weighted average of RF and GBM (Ave.) is
included. For LR, ***,**,* and · denote 0.1%, 1%, 5% and 10% levels of significance. RF and GBM are both tree-based algorithms
and so their estimates are based on the mean decrease in the Gini index of each node across all trees. The Gini index measures
node impurity. The data sample comprises of 58,447 alerts (23,449 corporate-related and 34,998 people-related) with 783 Issue
cases (270 corporate-related and 513 people-related). The model has 6 predictors.
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